This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Glycopeptide analysis by LC-MS/MS Fifty micrograms of S178-73A was reduced with 25 mM DTT for 1 h at 55 ?C and carboxyamidomethylated with 90 mM iodoacetamide in the dark for 45 min. The dried dialyzed sample was resuspended in 50 mM ammonium bicarbonate (NH4HCO3) and digested with 2.5 ?g of trypsin, chymotrypsin or chymotrypsin/Glu-C (DE) at 37 ?C for 20 h. The digested glypeptides were resuspended with 200 ?L of mobile phase A (0.1% formic acid in water). The glypeptides were then loaded onto a nanospray tapered capillary column/emitter (360x75x15 ?m, PicoFrit, New Objective, Woburn, MA) self-packed with C18 reverse-phase resin (10.5 cm, Waters, Milford, MA) in a Nitrogen pressure bomb for 10 min at 1,000 psi (~5 uL load) and then separated via a 160 min linear gradient of increasing mobile phase B (80% acetonitrile in 0.1% formic acid) at a flow rate of~500 nL/min directly into the mass spectrometer (LTQ Orbitrap Discoverer, Thermo Scientific). For improving the detection of glycopeptides with Asn36, chymotryptic digest was also separated and analyzed under low pH condition (pH ~1.7, 3% formic acid) according to the method of Hyunwoo et. al. A full mass spectrum was collected first with 30,000 resolution followed by MS/MS spectra using CID at 35%-50% collision energy of the sixth most intense peaks. The spectra of the glycopeptides were searched and analyzed manually.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR018502-09
Application #
8363053
Study Section
Special Emphasis Panel (ZRG1-CB-L (40))
Project Start
2011-06-01
Project End
2012-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
9
Fiscal Year
2011
Total Cost
$1,723
Indirect Cost
Name
University of Georgia
Department
Type
Organized Research Units
DUNS #
004315578
City
Athens
State
GA
Country
United States
Zip Code
30602
Gas-Pascual, Elisabet; Ichikawa, Hiroshi Travis; Sheikh, Mohammed Osman et al. (2018) CRISPR/Cas9 and glycomics tools for Toxoplasma glycobiology. J Biol Chem :
Sheikh, M Osman; Thieker, David; Chalmers, Gordon et al. (2017) O2 sensing-associated glycosylation exposes the F-box-combining site of the Dictyostelium Skp1 subunit in E3 ubiquitin ligases. J Biol Chem 292:18897-18915
Ma, Liang; Chen, Zehua; Huang, Da Wei et al. (2016) Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts. Nat Commun 7:10740
Karumbaiah, Lohitash; Enam, Syed Faaiz; Brown, Ashley C et al. (2015) Chondroitin Sulfate Glycosaminoglycan Hydrogels Create Endogenous Niches for Neural Stem Cells. Bioconjug Chem 26:2336-49
Li, Juan; Murtaugh, Michael P (2015) Functional analysis of porcine reproductive and respiratory syndrome virus N-glycans in infection of permissive cells. Virology 477:82-8
DePaoli-Roach, Anna A; Contreras, Christopher J; Segvich, Dyann M et al. (2015) Glycogen phosphomonoester distribution in mouse models of the progressive myoclonic epilepsy, Lafora disease. J Biol Chem 290:841-50
Dwyer, Chrissa A; Katoh, Toshihiko; Tiemeyer, Michael et al. (2015) Neurons and glia modify receptor protein-tyrosine phosphatase ? (RPTP?)/phosphacan with cell-specific O-mannosyl glycans in the developing brain. J Biol Chem 290:10256-73
Li, Juan; Tao, Shujuan; Orlando, Ron et al. (2015) N-glycosylation profiling of porcine reproductive and respiratory syndrome virus envelope glycoprotein 5. Virology 478:86-98
Panin, Vladislav M; Wells, Lance (2014) Protein O-mannosylation in metazoan organisms. Curr Protoc Protein Sci 75:Unit 12.12.
Ingale, Jidnyasa; Tran, Karen; Kong, Leopold et al. (2014) Hyperglycosylated stable core immunogens designed to present the CD4 binding site are preferentially recognized by broadly neutralizing antibodies. J Virol 88:14002-16

Showing the most recent 10 out of 104 publications