This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. A central goal of diabetes research (type 1 and type 2) is to generate large numbers of functional pancreatic islets or beta-cells for replacement therapy. Therefore, a fundamental knowledge of mechanisms and factors that promote beta-cell regeneration is essential for planning strategies to preserve and enhance beta-cell mass in vivo or to generate beta-cells in vitro for transplantation. This project applies quantitative proteomics approaches to identify new blood circulatory factors and islet proteins involved in beta-cell proliferation in a unique mouse model, the liver-specific insulin receptor knockout (LIRKO) mouse, which exhibit 20- to 30-fold increase in beta-cell mass in response to insulin resistance. This project requires high sensitivity, high resolution LC-FTICR capability from the resource for comparative quantitative characterization of the pancreatic islet proteins and serum proteins from mice with liver specific knockout of insulin receptor (LIRKO).

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR018522-09
Application #
8365464
Study Section
Special Emphasis Panel (ZRG1-BCMB-H (40))
Project Start
2011-07-01
Project End
2012-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
9
Fiscal Year
2011
Total Cost
$28,669
Indirect Cost
Name
Battelle Pacific Northwest Laboratories
Department
Type
DUNS #
032987476
City
Richland
State
WA
Country
United States
Zip Code
99352
Smallwood, Heather S; Duan, Susu; Morfouace, Marie et al. (2017) Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention. Cell Rep 19:1640-1653
Wang, Hui; Barbieri, Christopher E; He, Jintang et al. (2017) Quantification of mutant SPOP proteins in prostate cancer using mass spectrometry-based targeted proteomics. J Transl Med 15:175
Sigdel, Tara K; Gao, Yuqian; He, Jintang et al. (2016) Mining the human urine proteome for monitoring renal transplant injury. Kidney Int 89:1244-52
Ibrahim, Yehia M; Baker, Erin S; Danielson 3rd, William F et al. (2015) Development of a New Ion Mobility (Quadrupole) Time-of-Flight Mass Spectrometer. Int J Mass Spectrom 377:655-662
Ream, Thomas S; Haag, Jeremy R; Pontvianne, Frederic et al. (2015) Subunit compositions of Arabidopsis RNA polymerases I and III reveal Pol I- and Pol III-specific forms of the AC40 subunit and alternative forms of the C53 subunit. Nucleic Acids Res 43:4163-78
Webb-Robertson, Bobbie-Jo M; Wiberg, Holli K; Matzke, Melissa M et al. (2015) Review, evaluation, and discussion of the challenges of missing value imputation for mass spectrometry-based label-free global proteomics. J Proteome Res 14:1993-2001
Malouli, Daniel; Hansen, Scott G; Nakayasu, Ernesto S et al. (2014) Cytomegalovirus pp65 limits dissemination but is dispensable for persistence. J Clin Invest 124:1928-44
Cox, Jonathan T; Marginean, Ioan; Kelly, Ryan T et al. (2014) Improving the sensitivity of mass spectrometry by using a new sheath flow electrospray emitter array at subambient pressures. J Am Soc Mass Spectrom 25:2028-37
Cao, Li; Toli?, Nikola; Qu, Yi et al. (2014) Characterization of intact N- and O-linked glycopeptides using higher energy collisional dissociation. Anal Biochem 452:96-102
Martin, Jessica L; Yates, Phillip A; Soysa, Radika et al. (2014) Metabolic reprogramming during purine stress in the protozoan pathogen Leishmania donovani. PLoS Pathog 10:e1003938

Showing the most recent 10 out of 350 publications