This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. With its short lifespan, genetic amenability and the availability of long-lived mutant strains, C. elegans has become one of the most attractive model systems for aging research. In a previous collaboration, we have discovered very intriguing proteomic changes in worms that are long-lived due to dietary restriction or knockdown of insulin/IGF-like signaling. An important part of these changes is related to protein turnover. We hypothesize that lifespan extension in C. elegans is supported by changes in the turnover of specific protein pools. In the proposed project, we will apply the sensitive and reliable method pulsed SILAC, to verify whether proteins that are important for somatic maintenance are turned over more rapidly in long-lived worms compared to the corresponding controls. On the other hand, we expect a compensatory decrease in the turnover of the bulk of other proteins in these long-lived animals. For the experimental setup, we will use two mutant strains with extended lifespan: daf-2 (which is an insulin/IGF receptor mutant) and ife-2 (a somatic translation initiation mutant) and one strain in which lifespan is extended by environmental manipulation and dietary restriction by food dilution. These three long-lived strains will be compared to a corresponding control strain with normal lifespan. Worm culturing, SILAC labeling and sampling will be performed in the Braeckman lab, known for its extensive experience with C. elegans culturing and aging studies. These samples will be subsequently analyzed and quantified with state-of-the-art world class technology utilizing high resolution and mass accuracy mass spectrometry technologies at PNNL.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR018522-09
Application #
8365487
Study Section
Special Emphasis Panel (ZRG1-BCMB-H (40))
Project Start
2011-07-01
Project End
2012-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
9
Fiscal Year
2011
Total Cost
$28,669
Indirect Cost
Name
Battelle Pacific Northwest Laboratories
Department
Type
DUNS #
032987476
City
Richland
State
WA
Country
United States
Zip Code
99352
Smallwood, Heather S; Duan, Susu; Morfouace, Marie et al. (2017) Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention. Cell Rep 19:1640-1653
Wang, Hui; Barbieri, Christopher E; He, Jintang et al. (2017) Quantification of mutant SPOP proteins in prostate cancer using mass spectrometry-based targeted proteomics. J Transl Med 15:175
Sigdel, Tara K; Gao, Yuqian; He, Jintang et al. (2016) Mining the human urine proteome for monitoring renal transplant injury. Kidney Int 89:1244-52
Webb-Robertson, Bobbie-Jo M; Wiberg, Holli K; Matzke, Melissa M et al. (2015) Review, evaluation, and discussion of the challenges of missing value imputation for mass spectrometry-based label-free global proteomics. J Proteome Res 14:1993-2001
Ibrahim, Yehia M; Baker, Erin S; Danielson 3rd, William F et al. (2015) Development of a New Ion Mobility (Quadrupole) Time-of-Flight Mass Spectrometer. Int J Mass Spectrom 377:655-662
Ream, Thomas S; Haag, Jeremy R; Pontvianne, Frederic et al. (2015) Subunit compositions of Arabidopsis RNA polymerases I and III reveal Pol I- and Pol III-specific forms of the AC40 subunit and alternative forms of the C53 subunit. Nucleic Acids Res 43:4163-78
Malouli, Daniel; Hansen, Scott G; Nakayasu, Ernesto S et al. (2014) Cytomegalovirus pp65 limits dissemination but is dispensable for persistence. J Clin Invest 124:1928-44
Cox, Jonathan T; Marginean, Ioan; Kelly, Ryan T et al. (2014) Improving the sensitivity of mass spectrometry by using a new sheath flow electrospray emitter array at subambient pressures. J Am Soc Mass Spectrom 25:2028-37
Cao, Li; Toli?, Nikola; Qu, Yi et al. (2014) Characterization of intact N- and O-linked glycopeptides using higher energy collisional dissociation. Anal Biochem 452:96-102
Martin, Jessica L; Yates, Phillip A; Soysa, Radika et al. (2014) Metabolic reprogramming during purine stress in the protozoan pathogen Leishmania donovani. PLoS Pathog 10:e1003938

Showing the most recent 10 out of 350 publications