This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. MRI is basically a Fourier transform-based imaging technique. Although the Fourier reconstruction algorithm is optimal in the minimum-norm, least-squares sense, it suffers from a number of practical problems, most notably, limited resolution and Gibbs ringing artifact, when the number of encodings measured is small. These problems have limited the speed, efficiency, and quantitative accuracy of MRI. Although these problems are tolerable to a large extent in conventional anatomical imaging, they have become an important obstacle for functional and metabolic imaging. Over the past decade, the investigators of the Image Reconstruction Core have made great effort to address the image reconstruction problem from different angles, resulting in several very promising ideas and techniques that can use prior (or side) information effectively to compensate for the lack of sufficient measured imaging data, thus giving rise to much higher resolution and imaging speeds than the Fourier transform-based counterparts do. Subproject 1 of the Image reconstruction Core aims to provide an effective method to exploit spatiotemporal correlations of (k, t)-space signals for sparse sampling (thus reducing imaging time). Project 1 (Generalized Series Reconstruction from Spatiotemporal Imaging with Sparsely Sampled (k, t)-Space Data) has three specific aims:
Aim 1 : Optimizing a novel (k, t)-space formulation of the generalized series model to allow joint spatiotemporal modeling of the time-varying object function encountered in various spatiotemporal imaging applications of the proposed imaging center (e.g., dynamic perfusion imaging).
Aim 2 : Development of an efficient image reconstruction algorithm that can handle both conventional and sensitivity-encoded (k, t)-space data collected using a single or multiple phased array coils.
Aim 3 : Validation of the proposed (k, t)-space imaging method using the methodologies described in the Validation section.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR023953-02
Application #
7957224
Study Section
Special Emphasis Panel (ZRG1-SBIB-J (40))
Project Start
2009-07-01
Project End
2010-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
2
Fiscal Year
2009
Total Cost
$76,919
Indirect Cost
Name
Northern California Institute Research & Education
Department
Type
DUNS #
613338789
City
San Francisco
State
CA
Country
United States
Zip Code
94121
Kuceyeski, A; Shah, S; Dyke, J P et al. (2016) The application of a mathematical model linking structural and functional connectomes in severe brain injury. Neuroimage Clin 11:635-647
Lam, Fan; Liu, Ding; Song, Zhuang et al. (2016) A fast algorithm for denoising magnitude diffusion-weighted images with rank and edge constraints. Magn Reson Med 75:433-40
Pannetier, Nicolas A; Stavrinos, Theano; Ng, Peter et al. (2016) Quantitative framework for prospective motion correction evaluation. Magn Reson Med 75:810-6
Kuceyeski, Amy; Navi, Babak B; Kamel, Hooman et al. (2016) Structural connectome disruption at baseline predicts 6-months post-stroke outcome. Hum Brain Mapp 37:2587-601
Friedman, Eric J; Young, Karl; Tremper, Graham et al. (2015) Directed network motifs in Alzheimer's disease and mild cognitive impairment. PLoS One 10:e0124453
Kuceyeski, Amy; Navi, Babak B; Kamel, Hooman et al. (2015) Exploring the brain's structural connectome: A quantitative stroke lesion-dysfunction mapping study. Hum Brain Mapp 36:2147-60
Ma, Chao; Liang, Zhi-Pei (2015) Design of multidimensional Shinnar-Le Roux radiofrequency pulses. Magn Reson Med 73:633-45
Zhao, Bo; Lu, Wenmiao; Hitchens, T Kevin et al. (2015) Accelerated MR parameter mapping with low-rank and sparsity constraints. Magn Reson Med 74:489-98
Lu, Zhao-Hua; Zhu, Hongtu; Knickmeyer, Rebecca C et al. (2015) Multiple SNP Set Analysis for Genome-Wide Association Studies Through Bayesian Latent Variable Selection. Genet Epidemiol 39:664-77
Raj, Ashish; LoCastro, Eve; Kuceyeski, Amy et al. (2015) Network Diffusion Model of Progression Predicts Longitudinal Patterns of Atrophy and Metabolism in Alzheimer's Disease. Cell Rep :

Showing the most recent 10 out of 120 publications