Determining the potential human exposure to contaminants associated with Superfund sites requires an understanding of the persistence and movement of these contaminants in all environmental media. This Project is centered on assessment of human exposure to contaminants, with particular emphasis on determining how environmental fate and transport processes control the level and duration of such exposure. We will investigate basic physical, chemical, and biological processes, and their interactions, contributing to variability in fate and transport of contaminants in the vadose zone, groundwater, and surface water, and describe these processes in mathematical simulation models. Another important area is the development of approaches for monitoring bioremediation and establishment of appropriate cleanup levels. Particular emphasis will be on biodegradation of contaminants by microbes, both at the genomic/proteomic level in specific strains, as well as application of bioremediation technologies at the field scale. We will develop molecular tools to quantify microbial populations in time and space by targeting phylogenic and functional genes;develop basic information on contaminant biodegradation pathways;and link contaminant biodegradation directly to specific populations and their densities. We will estimate the relative importance of coupled physical, chemical, and biological fate processes occurring at multiple scales across multiple media in contributing to exposure variability. We will use transport and fate models to integrate our knowledge of the different rate limiting processes and complexity into the RBCA (Risk Based Corrective Action) framework, providing a more reliable, realistic tool for cleanup analysis and design. Consideration of multimedia contaminant transport is critical for determining human exposure. Accordingly, a new thrust of this project is on the transport of contaminants via atmospheric and surface water pathways, including investigation of exposure to particulate-associated contaminants in surface water and in air. Extraction methods, analytical methods, and experimental results related to particle bound contaminants obtained here will benefit from and contribute to Projects. In cooperation with Ellen Gold, epidemiologists at the California Department of Health Services, and the Statistical Analysis Core, we propose to both develop the appropriate methods and explore the consequences using field epidemiological data from a contaminated site that has caused human exposure (e.g., Rancho Cordova perchlorate problem).

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004699-23
Application #
7795925
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
23
Fiscal Year
2009
Total Cost
$289,863
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Ren, Qian; Ma, Min; Yang, Jun et al. (2018) Soluble epoxide hydrolase plays a key role in the pathogenesis of Parkinson's disease. Proc Natl Acad Sci U S A 115:E5815-E5823
Pecic, Stevan; Zeki, Amir A; Xu, Xiaoming et al. (2018) Novel piperidine-derived amide sEH inhibitors as mediators of lipid metabolism with improved stability. Prostaglandins Other Lipid Mediat 136:90-95
Yamanashi, Haruto; Boeglin, William E; Morisseau, Christophe et al. (2018) Catalytic activities of mammalian epoxide hydrolases with cis and trans fatty acid epoxides relevant to skin barrier function. J Lipid Res 59:684-695
Wang, Fuli; Zhang, Hongyong; Ma, Ai-Hong et al. (2018) COX-2/sEH Dual Inhibitor PTUPB Potentiates the Antitumor Efficacy of Cisplatin. Mol Cancer Ther 17:474-483
Napimoga, M H; Rocha, E P; Trindade-da-Silva, C A et al. (2018) Soluble epoxide hydrolase inhibitor promotes immunomodulation to inhibit bone resorption. J Periodontal Res 53:743-749
Blöcher, René; Wagner, Karen M; Gopireddy, Raghavender R et al. (2018) Orally Available Soluble Epoxide Hydrolase/Phosphodiesterase 4 Dual Inhibitor Treats Inflammatory Pain. J Med Chem 61:3541-3550
Hao, Lei; Kearns, Jamie; Scott, Sheyenne et al. (2018) Indomethacin Enhances Brown Fat Activity. J Pharmacol Exp Ther 365:467-475
Yang, Yang-Ming; Sun, Dong; Kandhi, Sharath et al. (2018) Estrogen-dependent epigenetic regulation of soluble epoxide hydrolase via DNA methylation. Proc Natl Acad Sci U S A 115:613-618
Zheng, Jing; Chen, Juan; Zou, Xiaohan et al. (2018) Saikosaponin d causes apoptotic death of cultured neocortical neurons by increasing membrane permeability and elevating intracellular Ca2+ concentration. Neurotoxicology 70:112-121
Cui, Xiping; Vasylieva, Natalia; Shen, Ding et al. (2018) Biotinylated single-chain variable fragment-based enzyme-linked immunosorbent assay for glycocholic acid. Analyst 143:2057-2065

Showing the most recent 10 out of 1149 publications