The Analytical Core is a central resourse composed of three laboratories which facilitate the development and application of modern analytical methods to solve key problems encountered by the components of the Superfund Program. The first laboratory is the Superfund Analytical Laboratory which provides a range of instrument services relying heavily on mass spectrometry and chromatography. The second is the Accelerator Mass Spectrometry Facility with a new sample preparation laboratory in Davis and 2 AMS instruments at LLNL for ultra trace analysis of 14C and 36C1 as heavy isotopes. The third is the Molecular Structure Facility (MSF) which provides service for fee in the area of protein and nucleic acid chemistry. The Superfund Analytical Laboratory provides a wide range of analytical services for both small molecule and (in collaboration with MSF) for protein analysis. The analytical capability supporting both proteomics and metabolomics of the 'omics core 5'is located here. The core provides walk up instrumentation as well as service and research collaboration to the projects. It advances analytical technology for example by developing robotic sample clean up procedures, immunoaffinity chromatography and 'lab on a valve'approaches to sample preparation. It carries out bioassay driven fractionation of hazardous mixtures in collaboration with the projects and provides education for Superfund scientists in analytical chemistry. The LLNL component provides access to a variety of advanced instruments but will focus on the sub attomole (i.e. 10[-8]) sensitivity of Accelerator Mass Spectrometry (AMS) in support of a variety of projects using both 14C and 36C1 analysis. This technique for example for the first time allows monitoring of human metabolism of hazardous chemicals at environmentally realistic levels. Core scentists will educate Superfund researchers in the use and value of a full array of analytical techniques.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004699-23
Application #
7795931
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
23
Fiscal Year
2009
Total Cost
$319,202
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
?ertíková Chábová, V?ra; Kujal, Petr; Škaroupková, Petra et al. (2018) Combined Inhibition of Soluble Epoxide Hydrolase and Renin-Angiotensin System Exhibits Superior Renoprotection to Renin-Angiotensin System Blockade in 5/6 Nephrectomized Ren-2 Transgenic Hypertensive Rats with Established Chronic Kidney Disease. Kidney Blood Press Res 43:329-349
Kodani, Sean D; Bhakta, Saavan; Hwang, Sung Hee et al. (2018) Identification and optimization of soluble epoxide hydrolase inhibitors with dual potency towards fatty acid amide hydrolase. Bioorg Med Chem Lett 28:762-768
Rand, Amy A; Helmer, Patrick O; Inceoglu, Bora et al. (2018) LC-MS/MS Analysis of the Epoxides and Diols Derived from the Endocannabinoid Arachidonoyl Ethanolamide. Methods Mol Biol 1730:123-133
Li, Xueshu; Holland, Erika B; Feng, Wei et al. (2018) Authentication of synthetic environmental contaminants and their (bio)transformation products in toxicology: polychlorinated biphenyls as an example. Environ Sci Pollut Res Int 25:16508-16521
Mao, Yuxin; Pan, Yang; Li, Xuan et al. (2018) High-precision digital droplet pipetting enabled by a plug-and-play microfluidic pipetting chip. Lab Chip 18:2720-2729
Burmistrov, Vladimir; Morisseau, Christophe; Harris, Todd R et al. (2018) Effects of adamantane alterations on soluble epoxide hydrolase inhibition potency, physical properties and metabolic stability. Bioorg Chem 76:510-527
Stamou, Marianna; Grodzki, Ana Cristina; van Oostrum, Marc et al. (2018) Fc gamma receptors are expressed in the developing rat brain and activate downstream signaling molecules upon cross-linking with immune complex. J Neuroinflammation 15:7
Huo, Jingqian; Li, Zhenfeng; Wan, Debin et al. (2018) Development of a Highly Sensitive Direct Competitive Fluorescence Enzyme Immunoassay Based on a Nanobody-Alkaline Phosphatase Fusion Protein for Detection of 3-Phenoxybenzoic Acid in Urine. J Agric Food Chem 66:11284-11290
Zamuruyev, Konstantin O; Borras, Eva; Pettit, Dayna R et al. (2018) Effect of temperature control on the metabolite content in exhaled breath condensate. Anal Chim Acta 1006:49-60
Zamuruyev, Konstantin O; Schmidt, Alexander J; Borras, Eva et al. (2018) Power-efficient self-cleaning hydrophilic condenser surface for portable exhaled breath condensate (EBC) metabolomic sampling. J Breath Res 12:036020

Showing the most recent 10 out of 1149 publications