The Analytical Core is a central resource composed of two laboratories that facilitate-development and application of modern analytical methods to solve key problems encountered by the components of the Superfund Program. The first is the Superfund Analytical Laboratory which provides a range of instrument services with emphasis on mass spectrometry and chromatography and small molecule analysis. The second is the Accelerator Mass Spectrometry Facility with 2 AMS instruments at Lawrence Livermore National Laboratory for ultra trace analysis. Proteomic analysis is largely provided in Core B (formerly Core C) although the instrumentation in Core A is available for proteomic work. The Analytical Core provides walk-up instrumentation as well as services and research collaborations to the projects. The services include assistance with other campus facilities such as nuclear magnetic resonance (NMR). Core A advances many analytical technologies, including preparation, throughput and accuracy by developing robotic procedures, sample clean up, approaches to sample preparation and derivatization. Core A supports the development of both global and pathway selective metabolomic techniques and their applications to hypothesis generation and testing as well as for biomarker development. It carries out bioassay driven fractionation of hazardous mixtures, in collaboration with the projects and provides education for Superfund scientists in analytical chemistry. The LLNL component provides access to a variety of advanced instruments but focuses on the sub attomole (i.e. 10[-18]) sensitivity of AMS in support of projects using [14]C as a heavy isotopes. This technique for the first time allows human monitoring of metabolism of hazardous chemicals at environmentally realistic levels using exceptionally low levels of tracers. Priority targets for AMS are to quantify human metabolism of the insecticide permethrin and the personal care product triclocarban. Core A scientists provide one-on-one assistance in analytical chemistry, data generation and analysis and on going formal training in analytical techniques for Superfund researchers. Thus, Core A provides the broad analytical support necessary for developing and using biomarkers of exposure and effect.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004699-28
Application #
8659368
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
28
Fiscal Year
2014
Total Cost
$283,227
Indirect Cost
$98,714
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Hill 3rd, Thomas; Rice, Robert H (2018) DUOX expression in human keratinocytes and bronchial epithelial cells: Influence of vanadate. Toxicol In Vitro 46:257-264
Taha, Ameer Y; Hennebelle, Marie; Yang, Jun et al. (2018) Regulation of rat plasma and cerebral cortex oxylipin concentrations with increasing levels of dietary linoleic acid. Prostaglandins Leukot Essent Fatty Acids 138:71-80
Kodani, Sean D; Wan, Debin; Wagner, Karen M et al. (2018) Design and Potency of Dual Soluble Epoxide Hydrolase/Fatty Acid Amide Hydrolase Inhibitors. ACS Omega 3:14076-14086
Ren, Qian; Ma, Min; Yang, Jun et al. (2018) Soluble epoxide hydrolase plays a key role in the pathogenesis of Parkinson's disease. Proc Natl Acad Sci U S A 115:E5815-E5823
Pecic, Stevan; Zeki, Amir A; Xu, Xiaoming et al. (2018) Novel piperidine-derived amide sEH inhibitors as mediators of lipid metabolism with improved stability. Prostaglandins Other Lipid Mediat 136:90-95
Yamanashi, Haruto; Boeglin, William E; Morisseau, Christophe et al. (2018) Catalytic activities of mammalian epoxide hydrolases with cis and trans fatty acid epoxides relevant to skin barrier function. J Lipid Res 59:684-695
Wang, Fuli; Zhang, Hongyong; Ma, Ai-Hong et al. (2018) COX-2/sEH Dual Inhibitor PTUPB Potentiates the Antitumor Efficacy of Cisplatin. Mol Cancer Ther 17:474-483
Napimoga, M H; Rocha, E P; Trindade-da-Silva, C A et al. (2018) Soluble epoxide hydrolase inhibitor promotes immunomodulation to inhibit bone resorption. J Periodontal Res 53:743-749
Blöcher, René; Wagner, Karen M; Gopireddy, Raghavender R et al. (2018) Orally Available Soluble Epoxide Hydrolase/Phosphodiesterase 4 Dual Inhibitor Treats Inflammatory Pain. J Med Chem 61:3541-3550
Hao, Lei; Kearns, Jamie; Scott, Sheyenne et al. (2018) Indomethacin Enhances Brown Fat Activity. J Pharmacol Exp Ther 365:467-475

Showing the most recent 10 out of 1149 publications