PROJECT 2 The proposed project describes a comprehensive research plan to develop and apply automated field- deployable lab-on-a-chip nanosensing platforms with high throughput, sensitivity and efficiency for multi- functional analysis of hazardous substances relevant to health and environmental monitoring in the Superfund Research Center (SRC). As extensive human activities pose increased environmental challenges worldwide, modern environmental monitoring and analytical technologies become particularly important to protect human health from adverse exposure to industrial pollutants, and to considerably improve public awareness. However, conventional laboratory-based analytical instruments are typically expensive and bulky, and require elaborate operational procedures conducted by dedicated personnel. The objective of this work is to deliver field- deployable multipurpose lab-on-a-chip technologies enabled by emerging microfluidics and nanosensing technologies for application in environmental monitoring and human health. Specifically, two innovative technological platforms to be investigated are: 1) a microfluidic print-to-analyze (MPA) system for high- throughput high-sensitivity biomolecular analysis (Aim I), and 2) a field-deployable ELISA-on-a-chip platform to incorporate quantitative nanosensing molecular assays (Aims II-IV), from which a 3D printable device can be customized and interfaced with mobile devices for health and environmental monitoring. Upon development, these technologies are expected to facilitate multiplexed, quantitative, automated processing and analysis of human biospecimens and environmental samples, with high sensitivity, quick turnover at low cost. Initial studies will involve testing these devices to detect pesticides and their degradation products, as an identified high concern for our community partner. More broadly, these platforms will be easily adaptable to commercial biorecognition molecules and detection of numerous Superfund priority chemicals. Overall, this research project directly advances the NIEHS mandate to develop analytical tools for the detection of hazardous chemicals and to apply them to environmental and human health monitoring applications.

Public Health Relevance

PROJECT 2 The proposed project describes a comprehensive research plan to develop and apply automated field- deployable lab-on-a-chip platforms with high throughput, high sensitivity and high efficiency for multifunctional analysis of hazardous substances relevant to human health, environmental monitoring, and the Superfund Research Program stakeholders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004699-30
Application #
9543291
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2018-04-01
Budget End
2019-03-31
Support Year
30
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Zheng, Jing; Chen, Juan; Zou, Xiaohan et al. (2018) Saikosaponin d causes apoptotic death of cultured neocortical neurons by increasing membrane permeability and elevating intracellular Ca2+ concentration. Neurotoxicology 70:112-121
Cui, Xiping; Vasylieva, Natalia; Shen, Ding et al. (2018) Biotinylated single-chain variable fragment-based enzyme-linked immunosorbent assay for glycocholic acid. Analyst 143:2057-2065
Harris, Todd R; Kodani, Sean; Rand, Amy A et al. (2018) Celecoxib Does Not Protect against Fibrosis and Inflammation in a Carbon Tetrachloride-Induced Model of Liver Injury. Mol Pharmacol 94:834-841
Bever, Candace S; Rand, Amy A; Nording, Malin et al. (2018) Effects of triclosan in breast milk on the infant fecal microbiome. Chemosphere 203:467-473
Zheng, Jing; McKinnie, Shaun M K; El Gamal, Abrahim et al. (2018) Organohalogens Naturally Biosynthesized in Marine Environments and Produced as Disinfection Byproducts Alter Sarco/Endoplasmic Reticulum Ca2+ Dynamics. Environ Sci Technol 52:5469-5478
Lakkappa, Navya; Krishnamurthy, Praveen T; Yamjala, Karthik et al. (2018) Evaluation of antiparkinson activity of PTUPB by measuring dopamine and its metabolites in Drosophila melanogaster: LC-MS/MS method development. J Pharm Biomed Anal 149:457-464
Guedes, A G P; Aristizabal, F; Sole, A et al. (2018) Pharmacokinetics and antinociceptive effects of the soluble epoxide hydrolase inhibitor t-TUCB in horses with experimentally induced radiocarpal synovitis. J Vet Pharmacol Ther 41:230-238
Heikenfeld, J; Jajack, A; Rogers, J et al. (2018) Wearable sensors: modalities, challenges, and prospects. Lab Chip 18:217-248
Minaz, Nathani; Razdan, Rema; Hammock, Bruce D et al. (2018) An inhibitor of soluble epoxide hydrolase ameliorates diabetes-induced learning and memory impairment in rats. Prostaglandins Other Lipid Mediat 136:84-89
Lassabe, Gabriel; Kramer, Karl; Hammock, Bruce D et al. (2018) Noncompetitive Homogeneous Detection of Small Molecules Using Synthetic Nanopeptamer-Based Luminescent Oxygen Channeling. Anal Chem 90:6187-6192

Showing the most recent 10 out of 1149 publications