The goal of the Superfund Basic Research Program at the University of California, Berkeley is """"""""to improve understanding of the relationship between exposure and disease;provide better human and ecological risk assessments;lower cleanup costs;and develop a range of prevention strategies to improve and protect public health, ecosystems and the environment."""""""" The Program builds on the strengths of UC Berkeley and Lawrence Berkeley National Laboratory in engineering, chemistry and molecular epidemiology, and consists of six interrelated basic and applied research projects. The overall theme of the program is """"""""The application of functional genomics, proteomics, transcriptomics, and nanotechnology to better detect arsenic, mercury, benzene, polycyclic aromatic hydrocarbons, trichloroethylene and other Superfund priority chemicals in the environment;evaluate their effects on human health, especially the health of susceptible populations such as children;and remediate their presence and reduce their toxicity. Themes of the individual projects include using proteomics and transcriptomics to study the role of chemical exposure in causing childhood leukemia;taking a functional genomic approach to finding susceptibility genes;applying novel biomarkers to study the health effects of arsenic;improving bioremediation of toxic chemicals through the application of -omic technologies and nanotechnology, and developing nano-scale sensors of chemical species in the environment. A toxicogenomic laboratory core and a computational biology core will assist researchers in creating tools for use in epidemiological and risk research. The new research translation core will facilitate intensive discussions between investigators and government audiences, and generate new initiatives to increase understanding of the significance and applicability of emerging areas of research to public health protection through policy, interventions, and individual actions. The training core will prepare graduate and post-doctoral students to conduct multidisciplinary research into the effects of environmental factors on health, and to develop technological solutions to prevent or mitigate the harm resulting from Superfund priority chemicals.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004705-23
Application #
7792413
Study Section
Special Emphasis Panel (ZES1-SET-A (P9))
Program Officer
Thompson, Claudia L
Project Start
1997-04-01
Project End
2011-03-31
Budget Start
2010-04-13
Budget End
2011-03-31
Support Year
23
Fiscal Year
2010
Total Cost
$3,054,564
Indirect Cost
Name
University of California Berkeley
Department
Public Health & Prev Medicine
Type
Schools of Public Health
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Bruton, Thomas A; Sedlak, David L (2018) Treatment of perfluoroalkyl acids by heat-activated persulfate under conditions representative of in situ chemical oxidation. Chemosphere 206:457-464
Schiffman, Courtney; McHale, Cliona M; Hubbard, Alan E et al. (2018) Identification of gene expression predictors of occupational benzene exposure. PLoS One 13:e0205427
Wiemels, Joseph L; Walsh, Kyle M; de Smith, Adam J et al. (2018) GWAS in childhood acute lymphoblastic leukemia reveals novel genetic associations at chromosomes 17q12 and 8q24.21. Nat Commun 9:286
Prasse, Carsten; Ford, Breanna; Nomura, Daniel K et al. (2018) Unexpected transformation of dissolved phenols to toxic dicarbonyls by hydroxyl radicals and UV light. Proc Natl Acad Sci U S A 115:2311-2316
Smith, Allan H; Marshall, Guillermo; Roh, Taehyun et al. (2018) Lung, Bladder, and Kidney Cancer Mortality 40?Years After Arsenic Exposure Reduction. J Natl Cancer Inst 110:241-249
Castriota, Felicia; Acevedo, Johanna; Ferreccio, Catterina et al. (2018) Obesity and increased susceptibility to arsenic-related type 2 diabetes in Northern Chile. Environ Res 167:248-254
Rothman, Nathaniel; Zhang, Luoping; Smith, Martyn T et al. (2018) Formaldehyde, Hematotoxicity, and Chromosomal Changes-Response. Cancer Epidemiol Biomarkers Prev 27:120-121
Yik-Sham Chung, Clive; Timblin, Greg A; Saijo, Kaoru et al. (2018) Versatile Histochemical Approach to Detection of Hydrogen Peroxide in Cells and Tissues Based on Puromycin Staining. J Am Chem Soc 140:6109-6121
Rappaport, Stephen M (2018) Redefining environmental exposure for disease etiology. NPJ Syst Biol Appl 4:30
Tachachartvanich, Phum; Sangsuwan, Rapeepat; Ruiz, Heather S et al. (2018) Assessment of the Endocrine-Disrupting Effects of Trichloroethylene and Its Metabolites Using in Vitro and in Silico Approaches. Environ Sci Technol 52:1542-1550

Showing the most recent 10 out of 629 publications