The Training Core will provide support for three post-doctoral fellows who will complete a two year period of cross-training. The training program is designed to provided research experienced in a multi- disciplinary, academic setting. When completed,, it will permit the trainee to be more effective and productive when participating in multi- disciplinary research teams engaged in reducing exposure and risk to hazardous environmental chemicals. The program will consist of the trainee participating in two different research laboratories within the Program Project (one biomedical and one non-biomedical) over a two- year period. The laboratories involved will be engaged in a collaborative research effort in which the trainee will be a participant. In addition, the trainee will have the opportunity to engage in didactic coursework in the area in which they have not concentrated in their prior Ph.D. degree program or work experience. This will allow the trainee to rapidly attain the information needed to participate in research in a discipline that is new to him or her. Attendance at a specified minimum of seminars at a national meetings will augment the cross-training experience. The universities involved in providing the training have excellent research facilities and education programs in toxicology, environmental engineering, microbiology chemistry, soil science and other disciplines. The combination of required facilities and an excellent research faculty will help produce well trained individuals who will meet the national need for scientists who are knowledgeable and experienced in working within multi-disciplinary teams solving complex environmental problems.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004911-14
Application #
6579892
Study Section
Special Emphasis Panel (ZES1)
Project Start
2002-04-01
Project End
2003-03-31
Budget Start
Budget End
Support Year
14
Fiscal Year
2002
Total Cost
$204,124
Indirect Cost
Name
Michigan State University
Department
Type
DUNS #
193247145
City
East Lansing
State
MI
Country
United States
Zip Code
48824
Nault, Rance; Doskey, Claire M; Fader, Kelly A et al. (2018) Comparison of Hepatic NRF2 and Aryl Hydrocarbon Receptor Binding in 2,3,7,8-Tetrachlorodibenzo-p-dioxin-Treated Mice Demonstrates NRF2-Independent PKM2 Induction. Mol Pharmacol 94:876-884
Dornbos, Peter; LaPres, John J (2018) Incorporating population-level genetic variability within laboratory models in toxicology: From the individual to the population. Toxicology 395:1-8
Zhang, Shuai; Liu, Qinfu; Gao, Feng et al. (2018) Interfacial Structure and Interaction of Kaolinite Intercalated with N-methylformamide Insight from Molecular Dynamics Modeling. Appl Clay Sci 158:204-210
Fader, Kelly A; Nault, Rance; Raehtz, Sandi et al. (2018) 2,3,7,8-Tetrachlorodibenzo-p-dioxin dose-dependently increases bone mass and decreases marrow adiposity in juvenile mice. Toxicol Appl Pharmacol 348:85-98
Zhang, Shuai; Liu, Qinfu; Cheng, Hongfei et al. (2018) Mechanism Responsible for Intercalation of Dimethyl Sulfoxide in Kaolinite: Molecular Dynamics Simulations. Appl Clay Sci 151:46-53
Zhang, Qiang; Li, Jin; Middleton, Alistair et al. (2018) Bridging the Data Gap From in vitro Toxicity Testing to Chemical Safety Assessment Through Computational Modeling. Front Public Health 6:261
Fader, K A; Nault, R; Kirby, M P et al. (2018) Corrigendum to ""Convergence of hepcidin deficiency, systemic iron overloading, heme accumulation, and REV-ERB?/? activation in aryl hydrocarbon receptor-elicited hepatotoxicity"" [Toxicol. Appl. Pharmacol. 321 (2017) 1-17]. Toxicol Appl Pharmacol 344:74
Konganti, Kranti; Ehrlich, Andre; Rusyn, Ivan et al. (2018) gQTL: A Web Application for QTL Analysis Using the Collaborative Cross Mouse Genetic Reference Population. G3 (Bethesda) 8:2559-2562
Zhang, Shuai; Liu, Qinfu; Gao, Feng et al. (2018) Molecular Dynamics Simulation of Basal Spacing, Energetics, and Structure Evolution of a Kaolinite-Formamide Intercalation Complex and Their Interfacial Interaction. J Phys Chem C Nanomater Interfaces 122:3341-3349
Fader, Kelly A; Nault, Rance; Kirby, Mathew P et al. (2017) Convergence of hepcidin deficiency, systemic iron overloading, heme accumulation, and REV-ERB?/? activation in aryl hydrocarbon receptor-elicited hepatotoxicity. Toxicol Appl Pharmacol 321:1-17

Showing the most recent 10 out of 417 publications