Contamination of soils and water by halohydrocarbons is a major health concern. Although some of these compounds are biodegradable, others are unusually persistent and their degradation frequently requires long periods of acclimation. The long term objectives and principle aim of the proposed research is to investigate the evolution of biodegradation and establish the importance of gen exchange in the in situ development of biodegradative traits among gram negative bacteria. Research proposed will identify mechanisms by which: (1) biodegradative capacity is established and magnified in hydrocarbon contaminated soil and water; (2) biodegradative traits are maintained or lose in natural bacterial communities; (3) inter- strain and inter-species transfer of biodegradative traits occurs within bacterial communities. The usefulness of gene probes, transposons, and restriction fragment length polymorphism to assess lateral gene transfer between well characterized isolates will be established. And the influence of environmental determinants including quality and quantity of halohydrocarbons, water availability, ph, and temperature on growth, survival, and persistence of biodegraders and biodegradation capacity will be established. Anticipated results will answer basic ecological questions relative to evolution of biodegradative capacity under natural and simulated natural conditions and will facilitate development of methods by which natural environments can be manipulated to maintain or enhance local biodegradative activity.

Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
1992
Total Cost
Indirect Cost
Name
University of Arizona
Department
Type
DUNS #
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Thomas, Andrew N; Root, Robert A; Lantz, R Clark et al. (2018) Oxidative weathering decreases bioaccessibility of toxic metal(loid)s in PM10 emissions from sulfide mine tailings. Geohealth 2:118-138
Yan, Ni; Liu, Fei; Liu, Boyang et al. (2018) Treatment of 1,4-dioxane and trichloroethene co-contamination by an activated binary persulfate-peroxide oxidation process. Environ Sci Pollut Res Int :
Dehghani, Mansooreh; Sorooshian, Armin; Nazmara, Shahrokh et al. (2018) Concentration and type of bioaerosols before and after conventional disinfection and sterilization procedures inside hospital operating rooms. Ecotoxicol Environ Saf 164:277-282
Keshavarzi, Behnam; Abbasi, Sajjad; Moore, Farid et al. (2018) Contamination Level, Source Identification and Risk Assessment of Potentially Toxic Elements (PTEs) and Polycyclic Aromatic Hydrocarbons (PAHs) in Street Dust of an Important Commercial Center in Iran. Environ Manage 62:803-818
Dodson, Matthew; de la Vega, Montserrat Rojo; Harder, Bryan et al. (2018) Low-level arsenic causes proteotoxic stress and not oxidative stress. Toxicol Appl Pharmacol 341:106-113
Soltani, Naghmeh; Keshavarzi, Behnam; Sorooshian, Armin et al. (2018) Oxidative potential (OP) and mineralogy of iron ore particulate matter at the Gol-E-Gohar Mining and Industrial Facility (Iran). Environ Geochem Health 40:1785-1802
Simon-Pascual, Alvaro; Sierra-Alvarez, Reyes; Ramos-Ruiz, Adriana et al. (2018) Reduction of platinum (IV) ions to elemental platinum nanoparticles by anaerobic sludge. J Chem Technol Biotechnol 93:1611-1617
Lyu, Ying; Brusseau, Mark L; Chen, Wei et al. (2018) Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media. Environ Sci Technol 52:7745-7753
Zeng, Chao; Nguyen, Chi; Boitano, Scott et al. (2018) Cerium dioxide (CeO2) nanoparticles decrease arsenite (As(III)) cytotoxicity to 16HBE14o- human bronchial epithelial cells. Environ Res 164:452-458
Zeb, Bahadar; Alam, Khan; Sorooshian, Armin et al. (2018) On the Morphology and Composition of Particulate Matter in an Urban Environment. Aerosol Air Qual Res 18:1431-1447

Showing the most recent 10 out of 497 publications