While arsenic has long been recognized as a human carcinogen, the non-cancerous health effects of arsenic ingestion in the drinking water can also lead to significant disease, including cardiovascular disease, arteriosclerosis, diabetes and chronic pulmonary disease. The effects of in utero or early postnatal exposure on alterations in development, leading to non-cancerous health effects have not been studied. This proposal explores the developmental effects of arsenic in the lung. The lung is a late developing organ, with growth continuing past the age of five years in humans. Our hypothesis is that ingestion of arsenic in drinking water results in altered in utero and postnatal gene expression important in lung development. Alteration in expression of these genes during critical developmental periods will result in chronic disease in the adult. To answer these questions, we propose the following Aims: 1.) Determine the dose response of arsenic-induced altered gene expression in fetal and neonatal lung. Our preliminary results indicate that extracellular matrix genes that are important for proper development during these critical periods are altered by in utero and adult exposures to arsenic. 2.) Correlate altered expression with phenotype. Protein expression patterns of genes identified as changing in a dose dependent manner in whole lung will be mapped using immunohistochemical techniques. Organ structural alterations will be determined using quantitative morphological techniques. 3.) Assess effects of folic acid deficiency and supplementation on alteration of gene expression and phenotype induced by exposure to arsenic. Altered gene expression following arsenic exposure has been correlated with altered DMA methylation. Expression of extracellular matrix genes (collagen and elastin) has been shown to be regulated by DMA methylation status. Therefore, we will determine whether arsenic-induced alteration in expression of collagens and elastin are correlated with methylation status. In humans, the nutritional state of folate was correlated with DMA methylation, and supplementation with folate is protective against several types of birth defects. Dietary folate supplementation represents a potential intervention/prevention strategy for lung disease induced by arsenic in populations at risk.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES004940-16
Application #
6901469
Study Section
Special Emphasis Panel (ZES1-SET-A (S6))
Project Start
2005-04-01
Project End
2010-03-31
Budget Start
2005-04-01
Budget End
2006-03-31
Support Year
16
Fiscal Year
2005
Total Cost
$163,959
Indirect Cost
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Pu, Mengjie; Guan, Zeyu; Ma, Yongwen et al. (2018) Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution. Appl Catal A Gen 549:82-92
Brusseau, Mark L; Guo, Zhilin (2018) The integrated contaminant elution and tracer test toolkit, ICET3, for improved characterization of mass transfer, attenuation, and mass removal. J Contam Hydrol 208:17-26
Valentín-Vargas, Alexis; Neilson, Julia W; Root, Robert A et al. (2018) Treatment impacts on temporal microbial community dynamics during phytostabilization of acid-generating mine tailings in semiarid regions. Sci Total Environ 618:357-368
Brusseau, Mark L (2018) Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface. Sci Total Environ 613-614:176-185
Delikhoon, Mahdieh; Fazlzadeh, Mehdi; Sorooshian, Armin et al. (2018) Characteristics and health effects of formaldehyde and acetaldehyde in an urban area in Iran. Environ Pollut 242:938-951
Hammond, Corin M; Root, Robert A; Maier, Raina M et al. (2018) Mechanisms of Arsenic Sequestration by Prosopis juliflora during the Phytostabilization of Metalliferous Mine Tailings. Environ Sci Technol 52:1156-1164
Yan, Ni; Zhong, Hua; Brusseau, Mark L (2018) The natural activation ability of subsurface media to promote in-situ chemical oxidation of 1,4-dioxane. Water Res 149:386-393
Madeira, Camila L; Field, Jim A; Simonich, Michael T et al. (2018) Ecotoxicity of the insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO) and its reduced metabolite 3-amino-1,2,4-triazol-5-one (ATO). J Hazard Mater 343:340-346
Liu, Pengfei; Rojo de la Vega, Montserrat; Sammani, Saad et al. (2018) RPA1 binding to NRF2 switches ARE-dependent transcriptional activation to ARE-NRE-dependent repression. Proc Natl Acad Sci U S A 115:E10352-E10361
Thomas, Andrew N; Root, Robert A; Lantz, R Clark et al. (2018) Oxidative weathering decreases bioaccessibility of toxic metal(loid)s in PM10 emissions from sulfide mine tailings. Geohealth 2:118-138

Showing the most recent 10 out of 497 publications