The objective of the Hazard Identification Core is to provide toxicological and analytical services that will be utilized by virtually all of our Biomedical and Environmental Sciences Research Projects. This Core provides a number of services that many investigators require and that some investigators need, but are not technologically equipped to perform.
The Specific Aims of this Core are to provide research support in two areas: Biological Response and Metal Analysis. The Biological Response section will include ecotoxicity (bacterial and daphnia), mammalian cytotoxicity (HepG2 cells), and genotoxicity (Ames) assays. The daphnia - ecotoxicity analyses will be performed in a consortium agreement with the Dartmouth SBRP. The Metal Analyses section will use ICP-Mass Spectrometer analysis for total metal content and HPLC-ICP-MS for analysis of chemical species of metal. Multiple metals will be analyzed but the majority of the analyses will be for arsenic and its chemical species (e.g. metabolites). The Hazard Identification Core efficiently provides common analyses (biological or metal analyses) to our SBRP investigators thus allowing for more SBRP funds to be directed to the individual research projects as well as uniform quality control of the analyses.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES004940-16
Application #
6901484
Study Section
Special Emphasis Panel (ZES1-SET-A (S6))
Project Start
2005-04-01
Project End
2010-03-31
Budget Start
2005-04-01
Budget End
2006-03-31
Support Year
16
Fiscal Year
2005
Total Cost
$221,997
Indirect Cost
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Zeng, Chao; Nguyen, Chi; Boitano, Scott et al. (2018) Cerium dioxide (CeO2) nanoparticles decrease arsenite (As(III)) cytotoxicity to 16HBE14o- human bronchial epithelial cells. Environ Res 164:452-458
Zeb, Bahadar; Alam, Khan; Sorooshian, Armin et al. (2018) On the Morphology and Composition of Particulate Matter in an Urban Environment. Aerosol Air Qual Res 18:1431-1447
Khan, Muhammad Amjad; Ding, Xiaodong; Khan, Sardar et al. (2018) The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Sci Total Environ 636:810-817
Yellowhair, Monica; Romanotto, Michelle R; Stearns, Diane M et al. (2018) Uranyl acetate induced DNA single strand breaks and AP sites in Chinese hamster ovary cells. Toxicol Appl Pharmacol 349:29-38
Fu, Xiaori; Dionysiou, Dionysios D; Brusseau, Mark L et al. (2018) Enhanced effect of EDDS and hydroxylamine on Fe(II)-catalyzed SPC system for trichloroethylene degradation. Environ Sci Pollut Res Int 25:15733-15742
Duncan, Candice M; Brusseau, Mark L (2018) An assessment of correlations between chlorinated VOC concentrations in tree tissue and groundwater for phytoscreening applications. Sci Total Environ 616-617:875-880
Virgone, K M; Ramirez-Andreotta, M; Mainhagu, J et al. (2018) Effective integrated frameworks for assessing mining sustainability. Environ Geochem Health 40:2635-2655
Namdari, Soodabeh; Karimi, Neamat; Sorooshian, Armin et al. (2018) Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmos Environ (1994) 173:265-276
Hossein Mardi, Ali; Khaghani, Ali; MacDonald, Alexander B et al. (2018) The Lake Urmia environmental disaster in Iran: A look at aerosol pollution. Sci Total Environ 633:42-49
Dehghani, Mansooreh; Fazlzadeh, Mehdi; Sorooshian, Armin et al. (2018) Characteristics and health effects of BTEX in a hot spot for urban pollution. Ecotoxicol Environ Saf 155:133-143

Showing the most recent 10 out of 497 publications