Arsenic associated with mineral matrices seldom poses a direct environmental risk, whereas arsenic that is mobilized in the aqueous phase poses a potential threat to human and environmental health. Consequently, controlling arsenic's sequestration by solids also controls its associated risk. Chemical reactions of arsenic occurring at the solid-water interface (including adsorption and desorption, precipitation and dissolution, and reduction and oxidation) not only govern the release of arsenic into water, but form the basis of arsenic removal technologies. Thus, the enhanced fundamental understanding of arsenic behavior at critical solid-water interfaces that this project expects to achieve can be applied to both prevention and remediation of arsenic contamination. Iron-based solids are typically used to remove arsenic from contaminated water and are the typical solids with which arsenic is associated in natural aerobic environments. However, our current work has shown they are unstable when placed in the anaerobic environments that typify many arsenic-bearing waste disposal sites. The reverse is true for arsenic associated with sulfides, such as at mine impacted sites, where the shift from anaerobic to aerobic environments stimulates arsenic release. Thus, the behavior of minerals containing iron and sulfide when subjected to changing redox environments is the primary focus of the proposed work. The project's specific aims are to determine the mechanisms and pathways for 1) arsenic association with iron solids and 2) arsenic association with sulfur solids, and to develop 3) engineered intervention approaches that utilize biological and biogeochemical mineral retention processes to minimize arsenic release from solid wastes. These solid-arsenic-water reactions of interest are typically microbially mediated and may take multiple pathways and lead to multiple final solid phases with varying capacity for arsenic retention. Because of the complexity of the relevant processes, the project includes experts in aqueous geochemistry, microbiology, chemical dynamic modeling, process engineering and spectroscopy.

Public Health Relevance

Arsenic is the second most prevalent metal at NPL sites and the highest rated pollutant on the CERCLA priority list. Arsenic remediation at contaminated sites and mitigation of its release from natural sources depends on sequestration by solids. The proposed work will provide critical insight into the processes that impact arsenic retention by solids and what intervention may be most effective to minimize its mobilization.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004940-23
Application #
8378313
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
23
Fiscal Year
2012
Total Cost
$325,232
Indirect Cost
$125,733
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Simon-Pascual, Alvaro; Sierra-Alvarez, Reyes; Ramos-Ruiz, Adriana et al. (2018) Reduction of platinum (IV) ions to elemental platinum nanoparticles by anaerobic sludge. J Chem Technol Biotechnol 93:1611-1617
Lyu, Ying; Brusseau, Mark L; Chen, Wei et al. (2018) Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media. Environ Sci Technol 52:7745-7753
Zeng, Chao; Nguyen, Chi; Boitano, Scott et al. (2018) Cerium dioxide (CeO2) nanoparticles decrease arsenite (As(III)) cytotoxicity to 16HBE14o- human bronchial epithelial cells. Environ Res 164:452-458
Zeb, Bahadar; Alam, Khan; Sorooshian, Armin et al. (2018) On the Morphology and Composition of Particulate Matter in an Urban Environment. Aerosol Air Qual Res 18:1431-1447
Khan, Muhammad Amjad; Ding, Xiaodong; Khan, Sardar et al. (2018) The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Sci Total Environ 636:810-817
Yellowhair, Monica; Romanotto, Michelle R; Stearns, Diane M et al. (2018) Uranyl acetate induced DNA single strand breaks and AP sites in Chinese hamster ovary cells. Toxicol Appl Pharmacol 349:29-38
Fu, Xiaori; Dionysiou, Dionysios D; Brusseau, Mark L et al. (2018) Enhanced effect of EDDS and hydroxylamine on Fe(II)-catalyzed SPC system for trichloroethylene degradation. Environ Sci Pollut Res Int 25:15733-15742
Duncan, Candice M; Brusseau, Mark L (2018) An assessment of correlations between chlorinated VOC concentrations in tree tissue and groundwater for phytoscreening applications. Sci Total Environ 616-617:875-880
Virgone, K M; Ramirez-Andreotta, M; Mainhagu, J et al. (2018) Effective integrated frameworks for assessing mining sustainability. Environ Geochem Health 40:2635-2655
Namdari, Soodabeh; Karimi, Neamat; Sorooshian, Armin et al. (2018) Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmos Environ (1994) 173:265-276

Showing the most recent 10 out of 497 publications