Atmospheric dust originating from mine tailings and other mining operations is a potentially important human exposure route for arsenic, lead and other toxic elements in the arid Southwest, and will become increasingly important here and elsewhere with predicted regional climate change and population growth. Dust particles emitted from mining operations mobilize trace metals which can then accumulate in soils, natural waters, and vegetation. Human exposure to the dust can occur through inhalation and, especially in the case of children, incidental dust ingestion. This project will use Micro-Orifice Uniform Deposit Impactor samplers to collect atmospheric aerosols in ten size fractions (0.056 microM to 18 microM aerodynamic diameter), downwind of two Superfund sites - contaminated mine tailings at Hayden-Winkleman and Iron King, AZ. The separate fractions will yield size-fractionated mass concentration data for toxic metals and metalloids (As, Pb, Cr, Cd, Sb), as well as other physicochemical characteristics. A scanning mobility particle sizer (SMPS) will allow us to count the number of ultrafine particles, which are thought to be most closely linked to adverse health effects. Using these tools, the following Aims will be addressed: 1) assess the role of atmospheric dust in the transport of metals contaminants from mine operations 2) identify contaminant source to assess remediation approaches 3) in collaboration with Project 9 assess role of vegetation cover to reduce dust emission 4) incorporate results into University of Arizona - Dust Regional Atmosphere Model for prediction of dust emissions and human exposures These studies will be performed in collaboration with Region 9 EPA and the State of Arizona Department of Environmental Quality. The results of these studies will be critical additions to the information that these agencies utilize for risk assessment of down-wind exposed populations.

Public Health Relevance

Greatly improved characterization of the aerosols originating from past and ongoing mining operations is of high priority and of direct relevance to the risk assessment at these sites by Region 9 EPA and the State of Arizona Department of Environmental Quality. Models from these studies can become predicitive tools for potential exposure during different climatic events.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004940-25
Application #
8659392
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
25
Fiscal Year
2014
Total Cost
$237,210
Indirect Cost
$80,636
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Simon-Pascual, Alvaro; Sierra-Alvarez, Reyes; Ramos-Ruiz, Adriana et al. (2018) Reduction of platinum (IV) ions to elemental platinum nanoparticles by anaerobic sludge. J Chem Technol Biotechnol 93:1611-1617
Lyu, Ying; Brusseau, Mark L; Chen, Wei et al. (2018) Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media. Environ Sci Technol 52:7745-7753
Zeng, Chao; Nguyen, Chi; Boitano, Scott et al. (2018) Cerium dioxide (CeO2) nanoparticles decrease arsenite (As(III)) cytotoxicity to 16HBE14o- human bronchial epithelial cells. Environ Res 164:452-458
Zeb, Bahadar; Alam, Khan; Sorooshian, Armin et al. (2018) On the Morphology and Composition of Particulate Matter in an Urban Environment. Aerosol Air Qual Res 18:1431-1447
Khan, Muhammad Amjad; Ding, Xiaodong; Khan, Sardar et al. (2018) The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Sci Total Environ 636:810-817
Yellowhair, Monica; Romanotto, Michelle R; Stearns, Diane M et al. (2018) Uranyl acetate induced DNA single strand breaks and AP sites in Chinese hamster ovary cells. Toxicol Appl Pharmacol 349:29-38
Fu, Xiaori; Dionysiou, Dionysios D; Brusseau, Mark L et al. (2018) Enhanced effect of EDDS and hydroxylamine on Fe(II)-catalyzed SPC system for trichloroethylene degradation. Environ Sci Pollut Res Int 25:15733-15742
Duncan, Candice M; Brusseau, Mark L (2018) An assessment of correlations between chlorinated VOC concentrations in tree tissue and groundwater for phytoscreening applications. Sci Total Environ 616-617:875-880
Virgone, K M; Ramirez-Andreotta, M; Mainhagu, J et al. (2018) Effective integrated frameworks for assessing mining sustainability. Environ Geochem Health 40:2635-2655
Namdari, Soodabeh; Karimi, Neamat; Sorooshian, Armin et al. (2018) Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmos Environ (1994) 173:265-276

Showing the most recent 10 out of 497 publications