(Project 3: Pawel Kiela, Paul Carini, and Albert Barbern) Legacy mine tailings that remain after extraction of economic metals are frequently enriched with co-occurring contaminants such as arsenic (As) that pose serious health hazards to neighboring communities and ecosystems. As-ingestion has been associated with diabetes, numerous cancers, and cardiovascular disorders. The mode of action for As toxicity is not clear; however, the degree of toxicity is associated with the valence and the methylation state of As metabolites (e.g. trivalent As species, iAsIII, MMAIII, and DMAIII ,are two times more cytotoxic than iAsV; methylated pentavalent arsenicals are 10-fold less cytotoxic than AsV). The gut microbiome is a primary point of contact for As in the host because oral ingestion is the principal exposure route. In addition, in vitro studies have demonstrated the capacity of human colon microbiota to biotransform iAs to both more and less toxic forms. Thus, accurate As risk assessment requires understanding of presystemic contributions by the gut microbiome to the bioaccessibility and speciation of the host As-load. The overall objectives of this proposal are to 1) contextualize the composition of the mouse gut microbiome with its functional capacity to metabolize As and to 2) evaluate the capacity of defined As- transforming microbial communities to affect in vivo diabetic outcomes following As exposure. The multidisciplinary team will employ a unique approach to identify specific associations between the composition of the gut microbiome, its genetic and functional capacity to sequester and/or transform As, and its capacity to either exacerbate or mitigate host diabetic outcomes in response to As exposure. Routine microbial taxonomic (16S rRNA gene amplicon profiling) and functional gene (shotgun metagenome) analyses will identify the impact of host sex, age and As-exposure on mouse fecal community composition. This molecular analysis will be combined with function-based high throughput culture analysis of the same fecal communities to facilitate the design of 120 distinct synthetic microbial communities (SynComs). The functional capacities of each SynCom to transform/sequester iAs will be identified and will potentially capture emergent properties of microbially-mediated As biotransformation that might be missed in studies using isolated phylotypes. The SynComs will be clustered in functional guilds with differing capacities to increase or decrease the As-load experienced by the host. These SynComs will be tested in germ-free mice to evaluate the capacity of specific microbial consortia with distinct As biotransformation capacities to modulate diabetic outcomes of As exposure. It is hypothesized that microbial communities that reduce As toxicity and associated diabetic outcomes can be exploited as potential probiotics. This hypothesis will be tested through verification of the ability of positive- outcome SynComs to colonize a specific pathogen free (SPF) mouse host and prevent or reduce pro-diabetic effects of iAsIII exposure.

Public Health Relevance

(Project 3: Pawel Kiela, Paul Carini, and Albert Barbern) Arsenic ingestion has been associated with diabetes, numerous cancers and cardiovascular disorders. Biotransformation of oral arsenic ingestion by the gut microbiome has potential to modulate the arsenic-load experienced by the host, and thus, must be incorporated into the risk assessment of arsenic ingestion. Microbial communities that reduce presystemic arsenic-toxicity can be exploited as potential probiotics to reduce negative health outcomes that are associated with chronic arsenic exposure.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES004940-31
Application #
9841041
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
2025-01-31
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
31
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Khan, Muhammad Amjad; Ding, Xiaodong; Khan, Sardar et al. (2018) The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Sci Total Environ 636:810-817
Yellowhair, Monica; Romanotto, Michelle R; Stearns, Diane M et al. (2018) Uranyl acetate induced DNA single strand breaks and AP sites in Chinese hamster ovary cells. Toxicol Appl Pharmacol 349:29-38
Fu, Xiaori; Dionysiou, Dionysios D; Brusseau, Mark L et al. (2018) Enhanced effect of EDDS and hydroxylamine on Fe(II)-catalyzed SPC system for trichloroethylene degradation. Environ Sci Pollut Res Int 25:15733-15742
Duncan, Candice M; Brusseau, Mark L (2018) An assessment of correlations between chlorinated VOC concentrations in tree tissue and groundwater for phytoscreening applications. Sci Total Environ 616-617:875-880
Virgone, K M; Ramirez-Andreotta, M; Mainhagu, J et al. (2018) Effective integrated frameworks for assessing mining sustainability. Environ Geochem Health 40:2635-2655
Namdari, Soodabeh; Karimi, Neamat; Sorooshian, Armin et al. (2018) Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmos Environ (1994) 173:265-276
Hossein Mardi, Ali; Khaghani, Ali; MacDonald, Alexander B et al. (2018) The Lake Urmia environmental disaster in Iran: A look at aerosol pollution. Sci Total Environ 633:42-49
Dehghani, Mansooreh; Fazlzadeh, Mehdi; Sorooshian, Armin et al. (2018) Characteristics and health effects of BTEX in a hot spot for urban pollution. Ecotoxicol Environ Saf 155:133-143
Pu, Mengjie; Guan, Zeyu; Ma, Yongwen et al. (2018) Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution. Appl Catal A Gen 549:82-92
Brusseau, Mark L; Guo, Zhilin (2018) The integrated contaminant elution and tracer test toolkit, ICET3, for improved characterization of mass transfer, attenuation, and mass removal. J Contam Hydrol 208:17-26

Showing the most recent 10 out of 497 publications