Overall objectives of the proposed study are to quantify carcinogenesis risks due to arsenic exposure at levels commonly found in the US. This research project shares the goals of the program of the program project of furthering our understanding of the environmental and health effects of arsenic has been identified as a potent skin carcinogen in highly exposed in rural regions of the northeastern US. Arsenic has been identified as a potent skin carcinogen in highly exposed human populations, but it is uncertain whether these effects occur at low levels. We propose to extend our epidemiological case-control study of bladder and skin of bladder and skin cancers in a US population: (1) to further resolve the dose-response relationship between low to moderate levels of arsenic exposure and risk of bladder cancer, (2) to test the hypothesis that arsenic is related specifically to intraepidermal carcinomas (including Bowen's disease) and multiple concomitant basal cell carcinomas (BCC) of the skin, and (3) to identify subgroups of individuals who may be at high risk of arsenic-associated cancers due to co-carcinogen exposure (e.g., low selenium). We will expand our investigations of individual biomarkers of arsenic exposure by testing the reliability of existing measures (drinking water, urine, and toenails) and exploring new molecular-genetic markers (i.e., based on cDNA arrays). New Hampshire is ideally suited to study the effects of low-dose arsenic exposure since it is one of the few regions of the country with a population-based surveillance system for non- melanoma skin cancer and over 20% of the private wells in the region contain levels of arsenic suspected of being carcinogenic. New Hampshire has unusually high bladder cancer mortality rates which are as yet unexplained, and there is accumulating evidence that these malignancies may result from arsenic ingestion. Thus, our study provides a unique opportunity to obtain results directly applicable to the US population and to help identify those at greater risk for arsenic-induced malignancies.

Project Start
2002-04-01
Project End
2003-03-31
Budget Start
Budget End
Support Year
8
Fiscal Year
2002
Total Cost
$163,250
Indirect Cost
Name
Dartmouth College
Department
Type
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Chen, Celia Y; Driscoll, Charles T (2018) Integrating mercury research and policy in a changing world. Ambio 47:111-115
Liu, Maodian; He, Yipeng; Baumann, Zofia et al. (2018) Traditional Tibetan Medicine Induced High Methylmercury Exposure Level and Environmental Mercury Burden in Tibet, China. Environ Sci Technol 52:8838-8847
Taylor, Vivien F; Li, Zhigang; Sayarath, Vicki et al. (2018) Author Correction: Distinct arsenic metabolites following seaweed consumption in humans. Sci Rep 8:4145
Emond, Jennifer A; Karagas, Margaret R; Baker, Emily R et al. (2018) Better Diet Quality during Pregnancy Is Associated with a Reduced Likelihood of an Infant Born Small for Gestational Age: An Analysis of the Prospective New Hampshire Birth Cohort Study. J Nutr 148:22-30
Jackson, Brian P (2018) Low level determination of gallium isotopes by ICP-QQQ. J Anal At Spectrom 33:897-900
Nachman, Keeve E; Punshon, Tracy; Rardin, Laurie et al. (2018) Opportunities and Challenges for Dietary Arsenic Intervention. Environ Health Perspect 126:84503
Koutros, Stella; Baris, Dalsu; Waddell, Richard et al. (2018) Potential effect modifiers of the arsenic-bladder cancer risk relationship. Int J Cancer 143:2640-2646
Liu, Maodian; Chen, Long; He, Yipeng et al. (2018) Impacts of farmed fish consumption and food trade on methylmercury exposure in China. Environ Int 120:333-344
Hampton, Thomas H; Jackson, Craig; Jung, Dawoon et al. (2018) Arsenic Reduces Gene Expression Response to Changing Salinity in Killifish. Environ Sci Technol 52:8811-8821
Caito, Samuel W; Jackson, Brian P; Punshon, Tracy et al. (2018) Editor's Highlight: Variation in Methylmercury Metabolism and Elimination Status in Humans Following Fish Consumption. Toxicol Sci 161:443-453

Showing the most recent 10 out of 372 publications