The primary goal of the Trace Element Analysis (TEA) Core (Core B) is to provide specific analytical services and analytical expertise to Dartmouth SBRP researchers to allow them to successfully complete the aims of their individual projects. Additionally, the TEA Core strives to be at the forefront of (mission-related) method development that augments the themes of the Dartmouth SBRP projects and advances these projects by providing analytical advances such as lower detection limits, quantification of an as yet unmeasured metal species, or the novel application of an analytical methodology. The TEA Core utilizes state of the art analytical instrumentation based on inductively coupled plasma mass spectrometry (ICP-MS) to provide low level determinations of trace elements in a variety of biological and environmental matrices. The TEA Core also provides speciation analysis for arsenic and mercury by liquid chromatography and gas chromatography coupled to ICP-MS, respectively. The chemical form (species) of arsenic or mercury in a sample ultimately determines the toxicity of that element, hence speciation information is essential in assessing the human health effects of these ubiquitous contaminant elements. The TEA Core provides toenail and hair analysis to assess the exposure of an individual to trace metals. Methods have been developed to quantify six chemical species of arsenic in human urine;these species range from arsenobetaine, a non-toxic form of arsenic that people are routinely exposed to through seafood, to monomethlarsenous acid, MMA(III), an extremely toxic chemical form of arsenic. The TEA Core also provides methodology to speciate mercury at extremely low levels and in very small sample masses. Our GC-ICP-MS methods can detect less than 1 picogram of mercury and can determine mercury species in sub milligram sample weights. Methylmercury is an extremely toxic form of mercury that bioaccumulates through the food chain, hence it is essential to be able to determine this mercury species at very low levels. The TEA Core continues to push the boundary of low level trace element detection to develop and validate methods for the determination of trace elements or elemental species in biological samples with the goal of providing Dartmouth SRBP researchers the information they need to make better predictive decisions about human and ecosystem health.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES007373-15
Application #
7792454
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
15
Fiscal Year
2009
Total Cost
$148,384
Indirect Cost
Name
Dartmouth College
Department
Type
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Smith, T Jarrod; Sondermann, Holger; O'Toole, George A (2018) Co-opting the Lap System of Pseudomonas fluorescens To Reversibly Customize Bacterial Cell Surfaces. ACS Synth Biol 7:2612-2617
Wang, Chengcheng; Na, GunNam; Bermejo, Eduardo Sanchez et al. (2018) Dissecting the components controlling root-to-shoot arsenic translocation in Arabidopsis thaliana. New Phytol 217:206-218
White, Alexandra J; O'Brien, Katie M; Jackson, Brian P et al. (2018) Urine and toenail cadmium levels in pregnant women: A reliability study. Environ Int 118:86-91
Hsu-Kim, Heileen; Eckley, Chris S; Achá, Dario et al. (2018) Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. Ambio 47:141-169
Taylor, V F; Buckman, K L; Seelen, E A et al. (2018) Organic carbon content drives methylmercury levels in the water column and in estuarine food webs across latitudes in the Northeast United States. Environ Pollut 246:639-649
Shi, Xiangming; Mason, Robert P; Charette, Matthew A et al. (2018) Mercury flux from salt marsh sediments: Insights from a comparison between 224Ra/228Th disequilibrium and core incubation methods. Geochim Cosmochim Acta 222:569-583
Andrew, Angeline S; Chen, Celia Y; Caller, Tracie A et al. (2018) Toenail mercury Levels are associated with amyotrophic lateral sclerosis risk. Muscle Nerve :
Eagles-Smith, Collin A; Silbergeld, Ellen K; Basu, Niladri et al. (2018) Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio 47:170-197
Obrist, Daniel; Kirk, Jane L; Zhang, Lei et al. (2018) A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 47:116-140
Farzan, Shohreh F; Howe, Caitlin G; Chen, Yu et al. (2018) Prenatal lead exposure and elevated blood pressure in children. Environ Int 121:1289-1296

Showing the most recent 10 out of 372 publications