Chlorinated organics bring toxicity from water, soil, and sediment phases, and exert a cumulative,deleterious effect on the environment. Various Superfund sites contain mixtures of RGBs, chloroethylenes,and other compounds. The degradation of of chloro-organics to nontoxic, non-chlorinated, and easilybiodegradable products will require integrated approaches involving 'combined' (reductive and oxidative)remediation technologies. Our proposed approach to use combined technologies should lead to significantimprovement over current remediation practices by the elimination of the production of chloro-organicintermediates. Our research will focus on the degradation of selected RGBs, TCE, and RGB mixtures. Athorough understanding of the reaction kinetics for both steps (reductive and oxidative), the potential role ofsurfactants, and material (such as doping catalyst metals, chelates) characteristics will be important for theintegration of the steps. The approaches taken for reductive dechlorination by bimetallic nanoparticles inpolymer media and nanotubes will allow the development of highly controlled structures for high reactivityand stability. The proposed technology will have a significant impact on the role of nanostructured materialsand hydroxyl radical /superoxide radical anion reaction pathway in the environmental field for current andfuture needs. The technique for potential on-site generation of hydrogen peroxide and gluconic acid (ironchelate) provides enzyme (glucose oxidase) immobilization using an innovative approach of layer- by-layerassembled membranes, and this should enhance application opportunities in various Superfund sites.Kinetic modeling of both oxidative and reductive systems should establish an excellent foundation forfundamental understanding of bimetallic nanotechnology-based systems and for chelate-modifiedhydroxyl/superoxide radical-based reactions. Another important aspect of this proposal is that pollutanttoxicity will be reduced significantly for both the dechlorination step and the combined reaction systems.Relevance: The proposed research is expected to have significant positive impact on pollution remediationthrough flexible dechlorination technology developments with significant reduction of material usage, andhighly improved health benefits through toxicity reduction.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES007380-12
Application #
7417303
Study Section
Special Emphasis Panel (ZES1-JAB-C (S7))
Project Start
Project End
Budget Start
2008-04-01
Budget End
2009-03-31
Support Year
12
Fiscal Year
2008
Total Cost
$216,499
Indirect Cost
Name
University of Kentucky
Department
Type
DUNS #
939017877
City
Lexington
State
KY
Country
United States
Zip Code
40506
Deng, Pan; Barney, Jazmyne; Petriello, Michael C et al. (2018) Hepatic metabolomics reveals that liver injury increases PCB 126-induced oxidative stress and metabolic dysfunction. Chemosphere 217:140-149
Preston, Joshua D; Reynolds, Leryn J; Pearson, Kevin J (2018) Developmental Origins of Health Span and Life Span: A Mini-Review. Gerontology 64:237-245
Gupta, Prachi; Thompson, Brendan L; Wahlang, Banrida et al. (2018) The environmental pollutant, polychlorinated biphenyls, and cardiovascular disease: a potential target for antioxidant nanotherapeutics. Drug Deliv Transl Res 8:740-759
Roghani, Mohammadyousef; Jacobs, Olivia P; Miller, Anthony et al. (2018) Occurrence of chlorinated volatile organic compounds (VOCs) in a sanitary sewer system: Implications for assessing vapor intrusion alternative pathways. Sci Total Environ 616-617:1149-1162
Ahmad, Irfan; Weng, Jiaying; Stromberg, A J et al. (2018) Fluorescence based detection of polychlorinated biphenyls (PCBs) in water using hydrophobic interactions. Analyst :
Petriello, Michael C; Hoffman, Jessie B; Vsevolozhskaya, Olga et al. (2018) Dioxin-like PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasis. Environ Pollut 242:1022-1032
Petriello, Michael C; Charnigo, Richard; Sunkara, Manjula et al. (2018) Relationship between serum trimethylamine N-oxide and exposure to dioxin-like pollutants. Environ Res 162:211-218
Aher, Ashish; Papp, Joseph; Colburn, Andrew et al. (2017) Naphthenic acids removal from high TDS produced water by persulfate mediated iron oxide functionalized catalytic membrane, and by nanofiltration. Chem Eng J 327:573-583
Dunn, Kristina; Gaetke, Lisa; Stephenson, Tammy et al. (2017) Older Adults' Perceptions of Nutrition as Protective Against Detrimental Effects of Environmental Pollution. J Ext 55:
Patil, Vinod S; Gutierrez, Angela M; Sunkara, Manjula et al. (2017) Curcumin Acrylation for Biological and Environmental Applications. J Nat Prod 80:1964-1971

Showing the most recent 10 out of 255 publications