The UC San Diego Superfund Basic Research Program will identify and characterize molecular events that contribute to the onset of environmental disease resulting from exposure to Superfund site contaminants. In the course of studies in Projects 1, 4, 5, 6 and 7, genes with altered patterns of gene expression after exposure to Superfund site chemicals will be identified. To understand the function of these novel genes in vivo, the Mouse Genetics and Phenotyping Core will produce mice with altered expression patterns of these genes, and assist investigators in the analysis of the phenotypes of these mutant mice. It is anticipated that the organization structure of this Core will foster collaborations among the five projects producing and characterizing mutant mice.
The specific aims of the Mouse Genetics and Phenotyping Core are to: 1) aid in the design and production of knock-out and transgenic mice; 2) provide expertise in husbandry of these mutant mouse strains, including breeding the mice to be sure that the mutant allele is transmitting through the germline, and to homozygosity for knock-outs; 3) maintain mice as inbred strains, and provide other inbred strains to produce relevant hybrid backgrounds; 4) in close conjunction with the investigator, perform a phenotyping screen on each of the mutant strains that will include histopathology, anatomic pathology, blood and urinalysis, and physiological monitoring; 5) assist the investigator in a further analysis of phenotypes when detected.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES010337-03
Application #
6577801
Study Section
Special Emphasis Panel (ZES1)
Project Start
2002-04-01
Project End
2003-03-31
Budget Start
Budget End
Support Year
3
Fiscal Year
2002
Total Cost
$175,014
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
077758407
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Tripathi, Anupriya; Debelius, Justine; Brenner, David A et al. (2018) The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 15:397-411
Chen, Shujuan; Tukey, Robert H (2018) Humanized UGT1 Mice, Regulation of UGT1A1, and the Role of the Intestinal Tract in Neonatal Hyperbilirubinemia and Breast Milk-Induced Jaundice. Drug Metab Dispos 46:1745-1755
Desai, Archita P; Mohan, Prashanthinie; Roubal, Anne M et al. (2018) Geographic Variability in Liver Disease-Related Mortality Rates in the United States. Am J Med 131:728-734
Ajmera, Veeral; Park, Charlie C; Caussy, Cyrielle et al. (2018) Magnetic Resonance Imaging Proton Density Fat Fraction Associates With Progression of Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 155:307-310.e2
Ahmadian, Maryam; Liu, Sihao; Reilly, Shannon M et al. (2018) ERR? Preserves Brown Fat Innate Thermogenic Activity. Cell Rep 22:2849-2859
Tapper, Elliot B; Loomba, Rohit (2018) Nonalcoholic fatty liver disease, metabolic syndrome, and the fight that will define clinical practice for a generation of hepatologists. Hepatology 67:1657-1659
Tripathi, Anupriya; Debelius, Justine; Brenner, David A et al. (2018) Publisher Correction: The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 15:785
Zhang, Yuqin; Nasser, Victoria; Pisanty, Odelia et al. (2018) A transportome-scale amiRNA-based screen identifies redundant roles of Arabidopsis ABCB6 and ABCB20 in auxin transport. Nat Commun 9:4204
Tõldsepp, Kadri; Zhang, Jingbo; Takahashi, Yohei et al. (2018) Mitogen-activated protein kinases MPK4 and MPK12 are key components mediating CO2 -induced stomatal movements. Plant J 96:1018-1035
Li, Zixing; Takahashi, Yohei; Scavo, Alexander et al. (2018) Abscisic acid-induced degradation of Arabidopsis guanine nucleotide exchange factor requires calcium-dependent protein kinases. Proc Natl Acad Sci U S A 115:E4522-E4531

Showing the most recent 10 out of 404 publications