The consequences to human health of metal pollution (i.e., toxicity) is dependent on metal bioavailability, which in turn is dependent on the species and form of the metal. Soluble metal species, particularly free metal ions, are generally more bioavailable and toxic to cells whereas the insoluble metal forms are less toxic. Bacteria may interact with metals in a variety of ways that lead to reduced metal bioavailability and toxicity. This project will examine the mechanisms of oxidation of manganese(II) and reduction of chromium(VI) by bacteria.processes that lead to the precipitation or removal of these and other metals from solution. The long-range goals of this research are, 1) to identify the genes and proteins involved and to characterize the mechanisms of these processes, including those that are turned on by exposure to toxic metals, 2) to develop biomarkers of metal bioavailability, and 3) manipulate these systems for metal bioremediation applications. Molecular biological and biochemical approaches will be employed to identify and characterize the genes and proteins involved in Mn(II) oxidation and Cr(VI) reduction/Cr toxicity. The genes encoding Mn(II)-oxidizing proteins will be cloned, sequenced and analyzed for key amino acid residues. One organism/protein will be used as a model for large-scale native or heterologous expression and purification and detailed characterization (enzyme kinetics, localization, cofactors and sites of glycosylation and metal-binding) largely using mass spectrometry. The effect of Mn, Cr, Pb, and/or Cu on the Mn(II)-oxidizing activity of cells will be examined at the physiological and molecular (e.g., microarrays or protein profiling) level in order to develop a model of environmental controls on Mn(II) oxidation. Chromium research will focus on genes regulated in response to Cr and the uptake and toxicity of different forms of Cr. Shewanella oneidensis MR-1 mutants deficient in genes up-regulated in response to Cr(VI) will be constructed and characterized. The specificity of gene expression to Cr(VI) relative to other metals (e.g., Pb, As, Se) will be tested. Real-time RT-PCR will be used to assess the expression of the Cr(VI) specific genes in laboratory mesocosms (or a field site) and correlate the expression patterns to Cr concentration and speciation. Mutants deficient in sulfate uptake will be tested for their ability to withstand exposure to Cr(VI) physiologically and using TEM. The effect of Cr(III) on gene expression and the complexation of Cr(III) by bacterial siderophores will also be investigated.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES010337-06
Application #
6897648
Study Section
Special Emphasis Panel (ZES1-SET-A (S6))
Project Start
2005-04-01
Project End
2010-03-31
Budget Start
2005-04-01
Budget End
2006-03-31
Support Year
6
Fiscal Year
2005
Total Cost
$222,146
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Brouha, Sharon S; Nguyen, Phirum; Bettencourt, Ricki et al. (2018) Increased severity of liver fat content and liver fibrosis in non-alcoholic fatty liver disease correlate with epicardial fat volume in type 2 diabetes: A prospective study. Eur Radiol 28:1345-1355
Hsu, Po-Kai; Takahashi, Yohei; Munemasa, Shintaro et al. (2018) Abscisic acid-independent stomatal CO2 signal transduction pathway and convergence of CO2 and ABA signaling downstream of OST1 kinase. Proc Natl Acad Sci U S A 115:E9971-E9980
Dhar, Debanjan; Antonucci, Laura; Nakagawa, Hayato et al. (2018) Liver Cancer Initiation Requires p53 Inhibition by CD44-Enhanced Growth Factor Signaling. Cancer Cell 33:1061-1077.e6
Febbraio, Mark A; Reibe, Saskia; Shalapour, Shabnam et al. (2018) Preclinical Models for Studying NASH-Driven HCC: How Useful Are They? Cell Metab :
Fujiwara, Ryoichi; Yoda, Emiko; Tukey, Robert H (2018) Species differences in drug glucuronidation: Humanized UDP-glucuronosyltransferase 1 mice and their application for predicting drug glucuronidation and drug-induced toxicity in humans. Drug Metab Pharmacokinet 33:9-16
Hartmann, Phillipp; Hochrath, Katrin; Horvath, Angela et al. (2018) Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology 67:2150-2166
Ganguly, Abantika; Guo, Lan; Sun, Lingling et al. (2018) Tdp1 processes chromate-induced single-strand DNA breaks that collapse replication forks. PLoS Genet 14:e1007595
Tripathi, Anupriya; Debelius, Justine; Brenner, David A et al. (2018) The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 15:397-411
Chen, Shujuan; Tukey, Robert H (2018) Humanized UGT1 Mice, Regulation of UGT1A1, and the Role of the Intestinal Tract in Neonatal Hyperbilirubinemia and Breast Milk-Induced Jaundice. Drug Metab Dispos 46:1745-1755
Desai, Archita P; Mohan, Prashanthinie; Roubal, Anne M et al. (2018) Geographic Variability in Liver Disease-Related Mortality Rates in the United States. Am J Med 131:728-734

Showing the most recent 10 out of 404 publications