Project 2 will use functional toxicogenomics and proteomics technologies to uncover the genes and pathways that determine cellular responses and genetic susceptibilities to arsenic, cadmium, chromium, nickel and other heavy metals that contaminate Superfund sites. Comparative functional genomics will provide key insights into some of the basic mechanisms that determine resistance or sensitivity to heavy metal toxicants. These studies are divided into three Specific Aims: 1) Assemble a functional genomic profile of fission yeast using a panel of environmental toxicants assessed with haploid and diploid deletion libraries. Barcode analysis determined by deep sequencing will provide a detailed and quantitative picture of the genes that determine susceptibilities to heavy metals. Cluster analysis will be applied to toxicants tested in pure forms or in mixtures. 2) Build on the functional genomic profiling data by assembling epistatic miniarray profiles (E-MAPs). These mutant interaction studies will define the genetic networks that determine cellular sensitivities to heavy metals and may uncover interactions with other pathways such as DNA damage responses (DDRs). The existence of conserved genetic interactions in human cells will be assessed by RNAi analyses. 3) Investigate changes in protein abundance triggered by heavy metal exposure using isobaric tag for relative and absolute quantitation (iTRAQ). These proteomic studies will provide further insights into how stress-regulated transcription factors and stress-activated protein kinases control cellular responses to heavy metal stress.

Public Health Relevance

Genetic variation of multiple loci likely determines individual susceptibilities to mixtures of toxicants found at Superfund sites. Functional toxicogenomics will be used to define the genes and genetic interactions that determine heavy metal sensitivity in fission yeast. Insights gleaned from these studies will be applied to investigating the effects of heavy metals in human cells.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES010337-11A1
Application #
8289737
Study Section
Special Emphasis Panel (ZES1-JAB-J (SF))
Project Start
Project End
Budget Start
2012-04-26
Budget End
2013-03-31
Support Year
11
Fiscal Year
2012
Total Cost
$327,094
Indirect Cost
$13,718
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Desai, Archita P; Mohan, Prashanthinie; Roubal, Anne M et al. (2018) Geographic Variability in Liver Disease-Related Mortality Rates in the United States. Am J Med 131:728-734
Ajmera, Veeral; Park, Charlie C; Caussy, Cyrielle et al. (2018) Magnetic Resonance Imaging Proton Density Fat Fraction Associates With Progression of Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 155:307-310.e2
Ahmadian, Maryam; Liu, Sihao; Reilly, Shannon M et al. (2018) ERR? Preserves Brown Fat Innate Thermogenic Activity. Cell Rep 22:2849-2859
Tapper, Elliot B; Loomba, Rohit (2018) Nonalcoholic fatty liver disease, metabolic syndrome, and the fight that will define clinical practice for a generation of hepatologists. Hepatology 67:1657-1659
Tripathi, Anupriya; Debelius, Justine; Brenner, David A et al. (2018) Publisher Correction: The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 15:785
Zhang, Yuqin; Nasser, Victoria; Pisanty, Odelia et al. (2018) A transportome-scale amiRNA-based screen identifies redundant roles of Arabidopsis ABCB6 and ABCB20 in auxin transport. Nat Commun 9:4204
Tõldsepp, Kadri; Zhang, Jingbo; Takahashi, Yohei et al. (2018) Mitogen-activated protein kinases MPK4 and MPK12 are key components mediating CO2 -induced stomatal movements. Plant J 96:1018-1035
Li, Zixing; Takahashi, Yohei; Scavo, Alexander et al. (2018) Abscisic acid-induced degradation of Arabidopsis guanine nucleotide exchange factor requires calcium-dependent protein kinases. Proc Natl Acad Sci U S A 115:E4522-E4531
Hoffmann, Hanne M; Gong, Ping; Tamrazian, Anika et al. (2018) Transcriptional interaction between cFOS and the homeodomain-binding transcription factor VAX1 on the GnRH promoter controls Gnrh1 expression levels in a GnRH neuron maturation specific manner. Mol Cell Endocrinol 461:143-154
Zhong, Zhenyu; Liang, Shuang; Sanchez-Lopez, Elsa et al. (2018) New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560:198-203

Showing the most recent 10 out of 404 publications