The Technical Support Core provides a common source of specialized facilities, services, and expertise to the individual research projects. Organization of these elements into a core will help avoid duplication of effort and improve the efficiency and cost-effectiveness of the overall Superfund grant. This CROET-based component of the core provides support in the areas of cell and tissue culture, morphology and microscopy, analytical chemistry, molecular biology, and statistics, and media-communications. Each of these areas is crucial to at least two of the projects within this grant application, and most serve at least three projects. All of the projects in this application can make use of these core components as a source of specialized training for scientist and students associated with the grant. Our objective is to provide whatever level of assistance an individual project needs in these specialized areas. Services rendered will vary form simply providing an investigator with a place and facilities to work, all the way to offering a complete turnkey service such as analysis of chemicals and metabolites in brain tissue using advanced analytical techniques.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
1P42ES010338-01
Application #
6325257
Study Section
Special Emphasis Panel (ZES1-MAO-A (G1))
Project Start
2000-06-01
Project End
2005-03-31
Budget Start
Budget End
Support Year
1
Fiscal Year
2000
Total Cost
$100,818
Indirect Cost
Name
Oregon Health and Science University
Department
Type
DUNS #
009584210
City
Portland
State
OR
Country
United States
Zip Code
97239
Kisby, Glen E; Moore, Holly; Spencer, Peter S (2013) Animal models of brain maldevelopment induced by cycad plant genotoxins. Birth Defects Res C Embryo Today 99:247-55
Sabalowsky, Andrew R; Semprini, Lewis (2010) Trichloroethene and cis-1,2-dichloroethene concentration-dependent toxicity model simulates anaerobic dechlorination at high concentrations: I. batch-fed reactors. Biotechnol Bioeng 107:529-39
Sabalowsky, Andrew R; Semprini, Lewis (2010) Trichloroethene and cis-1,2-dichloroethene concentration-dependent toxicity model simulates anaerobic dechlorination at high concentrations. II: continuous flow and attached growth reactors. Biotechnol Bioeng 107:540-9
Tshala-Katumbay, Desire; Monterroso, Victor; Kayton, Robert et al. (2009) Probing mechanisms of axonopathy. Part II: Protein targets of 2,5-hexanedione, the neurotoxic metabolite of the aliphatic solvent n-hexane. Toxicol Sci 107:482-9
Pessah, Isaac N; Seegal, Richard F; Lein, Pamela J et al. (2008) Immunologic and neurodevelopmental susceptibilities of autism. Neurotoxicology 29:532-45
Dziennis, Suzan; Yang, Dongren; Cheng, Jian et al. (2008) Developmental exposure to polychlorinated biphenyls influences stroke outcome in adult rats. Environ Health Perspect 116:474-80
Skinner, Amy M; Turker, Mitchell S (2008) High frequency induction of CC to TT tandem mutations in DNA repair-proficient mammalian cells. Photochem Photobiol 84:222-7
Skinner, Amy M; Dan, Cristian; Turker, Mitchell S (2008) The frequency of CC to TT tandem mutations in mismatch repair-deficient cells is increased in a cytosine run. Mutagenesis 23:87-91
Tshala-Katumbay, Desire; Monterroso, Victor; Kayton, Robert et al. (2008) Probing mechanisms of axonopathy. Part I: Protein targets of 1,2-diacetylbenzene, the neurotoxic metabolite of aromatic solvent 1,2-diethylbenzene. Toxicol Sci 105:134-41
Sabri, Mohammad I; Hashemi, Seyed B; Lasarev, Michael R et al. (2007) Axonopathy-inducing 1,2-diacetylbenzene forms adducts with motor and cytoskeletal proteins required for axonal transport. Neurochem Res 32:2152-9

Showing the most recent 10 out of 47 publications