Two overarching themes of the biomedical research of this Superfund Program addressed in this project relate to a) the metabolism of arsenic (As) and b) As-induced oxidative stress. There is significant variability in progression from As exposure to clinical manifestations of disease. Several studies have led to the hypothesis that nutritional status may account for a substantial portion of this variability. Inorganic As is methylated via one-carbon metabolism, a biochemical pathway that is dependent on folate for recruitment of one-carbon groups. We wish to expand our studies, which have begun to characterize the impact of nutritional regulation of one-carbon metabolism on the inter-individual variability in As methylation. Glutathione (GSH), a key component of the primary antioxidant defense mechanism, and the electron donor for As reduction, is synthesized from homocysteine, and this synthesis is regulated by intermediates of onecarbon metabolism. A great deal of basic research, including salient work from members of our group, points to the growing belief that As depletes glutathione (GSH) and induces oxidative stress. However, the relationship between As exposure and oxidative stress has not been rigorously examined in human populations. The first specific aim of this proposal will utilize the repository of biological samples established by the Cohort Study (Project #2) to conduct a nested case-control study to identify modifiable risk factors (e.g. oxidative stress and/or hyperhomocysteinemia) related to increased susceptibility to As-induced skin lesions. The remaining specific aims will take advantage of the expansion of our study area (and installation of Asfree tube wells) in Projects #3 and #7 to recruit 375 new adults who are currently exposed to As.
In Specific Aim 2, we will address a fundamental question: To what extent do urinary As metabolites reflect As metabolites in the circulation? In Specific Aim 3, we will conduct a cross-sectional study to test the hypotheses that higher concentrations of s-adenosylhomocysteine (SAH) and lower concentrations of GSH are associated with reduced As methylation.
In Specific Aim 4, we propose to examine dose-response relationships between As exposure and oxidative stress. Finally, we will test the hypothesis that reduction of As exposure alleviates oxidative stress. The proposed studies have the potential to a) substantiate that As induces oxidative stress and depletes GSH in a human population, b) link As-induced oxidative stress and/or nutritional status to an arsenic-related clinical outcome, and c) expand our understanding of the mechanisms underlying these processes. Such findings would have significant implications for the identification of potential targeted interventions for preventing As-toxicity.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES010349-10
Application #
8065867
Study Section
Special Emphasis Panel (ZES1)
Project Start
2010-04-21
Project End
2011-03-31
Budget Start
2010-04-21
Budget End
2011-03-31
Support Year
10
Fiscal Year
2010
Total Cost
$239,512
Indirect Cost
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Niedzwiecki, Megan M; Liu, Xinhua; Zhu, Huiping et al. (2018) Serum homocysteine, arsenic methylation, and arsenic-induced skin lesion incidence in Bangladesh: A one-carbon metabolism candidate gene study. Environ Int 113:133-142
Shoenfelt, Elizabeth M; Winckler, Gisela; Lamy, Frank et al. (2018) Highly bioavailable dust-borne iron delivered to the Southern Ocean during glacial periods. Proc Natl Acad Sci U S A 115:11180-11185
Haque, Ezazul; Mailloux, Brian J; de Wolff, Daisy et al. (2018) Quantitative drinking water arsenic concentrations in field environments using mobile phone photometry of field kits. Sci Total Environ 618:579-585
Wasserman, Gail A; Liu, Xinhua; Parvez, Faruque et al. (2018) A cross-sectional study of water arsenic exposure and intellectual function in adolescence in Araihazar, Bangladesh. Environ Int 118:304-313
Sun, Jing; Mailloux, Brian J; Chillrud, Steven N et al. (2018) Simultaneously Quantifying Ferrihydrite and Goethite in Natural Sediments Using the Method of Standard Additions with X-ray Absorption Spectroscopy. Chem Geol 476:248-259
Argos, Maria; Tong, Lin; Roy, Shantanu et al. (2018) Screening for gene-environment (G×E) interaction using omics data from exposed individuals: an application to gene-arsenic interaction. Mamm Genome 29:101-111
Wu, Fen; Chi, Liang; Ru, Hongyu et al. (2018) Arsenic Exposure from Drinking Water and Urinary Metabolomics: Associations and Long-Term Reproducibility in Bangladesh Adults. Environ Health Perspect 126:017005
Sanchez, Tiffany R; Powers, Martha; Perzanowski, Matthew et al. (2018) A Meta-analysis of Arsenic Exposure and Lung Function: Is There Evidence of Restrictive or Obstructive Lung Disease? Curr Environ Health Rep 5:244-254
Farzan, Shohreh F; Howe, Caitlin G; Chen, Yu et al. (2018) Prenatal lead exposure and elevated blood pressure in children. Environ Int 121:1289-1296
Sanchez, Tiffany R; Slavkovich, Vesna; LoIacono, Nancy et al. (2018) Urinary metals and metal mixtures in Bangladesh: Exploring environmental sources in the Health Effects of Arsenic Longitudinal Study (HEALS). Environ Int 121:852-860

Showing the most recent 10 out of 333 publications