This analytical core is housed primarily at the Lamont-Doherty Earth Observatory of Columbia University and, through subcontracts, at McMaster University in Canada and the University of Manchester in the UK. The Biogeochemistry Core will generate data in support of biomedical Projects 1 (PI: Ahsan) and 2 (PI: Gamble), geoscience Projects 3 (PI: Bostick) and 4 (PI: van Geen), the Community Engagement Core (PI: Zheng), and the Research Translation Core (Co-PIs: Baptista and Chillrud) of the Columbia University Superfund Research Program (CU SRP). The generated data will include field and laboratory analysis of 15,000 groundwater samples for dissolved arsenic (As) and, where required, laboratory measurements of redox-sensitive elements Fe, Mn, S, and P, the major cations Na, Mg, Ca, K, and potentially toxic constituents Cr, Ni, Co, Cu, Zn, Mo, Cd, Sb, Pb and U. Other constituents of groundwater analyzed under Core C will include the anions Cl, Br, SO4 (sulfate), and F in 3,000 samples, dissolved organic carbon (DOC) in 3,000 samples, and reactive organic acids such as lactate and pyruvate in 150 samples. Core C will also support radiocarbon analysis of DNA/RNA isolated from 30 groundwater samples and phospholipid fatty-acids (PLFA) extracted from 30 aquifer sediment samples. The same 30 aquifer sediment samples will be analyzed by next-generation Illumina pyrosequencing methods to characterize microbial populations and metagenomics. The speciation As and Fe in 300 aquifer sediment samples will be determined by synchrotron-based X- spectroscopy (XANES and EXAFS). Finally, 1,000 aquifer sediment samples will be analyzed for bulk concentrations of Fe, As, Ca and other relevant elements by X-ray fluorescence.

Public Health Relevance

Core C - Narrative: Arsenic is a contaminant of concern in groundwater at a large proportion of sites on the National Priority List (NPL, so called ?Superfund?) sites in the US. Approximately 2.5 million private well owners in the US are at risk of the adverse health effects associated with chronic exposure to As. Across South and Southeast Asia, over 100 million villagers are chronically exposed to arsenic by drinking groundwater from their well. This Core supports biogeochemical field work and laboratory measurements to address these issues under the Columbia University Superfund Research Program.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES010349-16
Application #
9257604
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2017-08-15
Budget End
2018-03-31
Support Year
16
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Niedzwiecki, Megan M; Liu, Xinhua; Zhu, Huiping et al. (2018) Serum homocysteine, arsenic methylation, and arsenic-induced skin lesion incidence in Bangladesh: A one-carbon metabolism candidate gene study. Environ Int 113:133-142
Shoenfelt, Elizabeth M; Winckler, Gisela; Lamy, Frank et al. (2018) Highly bioavailable dust-borne iron delivered to the Southern Ocean during glacial periods. Proc Natl Acad Sci U S A 115:11180-11185
Haque, Ezazul; Mailloux, Brian J; de Wolff, Daisy et al. (2018) Quantitative drinking water arsenic concentrations in field environments using mobile phone photometry of field kits. Sci Total Environ 618:579-585
Wasserman, Gail A; Liu, Xinhua; Parvez, Faruque et al. (2018) A cross-sectional study of water arsenic exposure and intellectual function in adolescence in Araihazar, Bangladesh. Environ Int 118:304-313
Sun, Jing; Mailloux, Brian J; Chillrud, Steven N et al. (2018) Simultaneously Quantifying Ferrihydrite and Goethite in Natural Sediments Using the Method of Standard Additions with X-ray Absorption Spectroscopy. Chem Geol 476:248-259
Argos, Maria; Tong, Lin; Roy, Shantanu et al. (2018) Screening for gene-environment (G×E) interaction using omics data from exposed individuals: an application to gene-arsenic interaction. Mamm Genome 29:101-111
Wu, Fen; Chi, Liang; Ru, Hongyu et al. (2018) Arsenic Exposure from Drinking Water and Urinary Metabolomics: Associations and Long-Term Reproducibility in Bangladesh Adults. Environ Health Perspect 126:017005
Sanchez, Tiffany R; Powers, Martha; Perzanowski, Matthew et al. (2018) A Meta-analysis of Arsenic Exposure and Lung Function: Is There Evidence of Restrictive or Obstructive Lung Disease? Curr Environ Health Rep 5:244-254
Farzan, Shohreh F; Howe, Caitlin G; Chen, Yu et al. (2018) Prenatal lead exposure and elevated blood pressure in children. Environ Int 121:1289-1296
Sanchez, Tiffany R; Slavkovich, Vesna; LoIacono, Nancy et al. (2018) Urinary metals and metal mixtures in Bangladesh: Exploring environmental sources in the Health Effects of Arsenic Longitudinal Study (HEALS). Environ Int 121:852-860

Showing the most recent 10 out of 333 publications