The Duke University Superfund Basic Research Program Research Translation Core seeks to deliver the Center's research results to critical members of the scientific, governmental, and lay community.
Specific aims for the Research Translation Core include: 1. To serve as a bridge between center investigators and national, state, and local environmental health officials regarding the research interests and results of the former and the research needs of the latter. 2. To target joint academic/practicing professional audiences for research translation on scientific questions related to developmental toxicity. 3. To maintain timely, informative, and user-friendly mechanisms for disseminating information on the research activities of center investigators, including a website and an electronic newsletter. The Research Translation Core will be co-directed by Marie Lynn Miranda (Outreach Core PI) and Richard Di Giulio (Center PI). This combination will ensure that the full suite of research results emanating from the Duke Superfund Center are communicated to multiple audiences using appropriate and tailored formats.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES010356-09
Application #
7600543
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2008-04-01
Budget End
2009-03-31
Support Year
9
Fiscal Year
2008
Total Cost
$111,374
Indirect Cost
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Hartman, Jessica H; Smith, Latasha L; Gordon, Kacy L et al. (2018) Swimming Exercise and Transient Food Deprivation in Caenorhabditis elegans Promote Mitochondrial Maintenance and Protect Against Chemical-Induced Mitotoxicity. Sci Rep 8:8359
Luz, Anthony L; Kassotis, Christopher D; Stapleton, Heather M et al. (2018) The high-production volume fungicide pyraclostrobin induces triglyceride accumulation associated with mitochondrial dysfunction, and promotes adipocyte differentiation independent of PPAR? activation, in 3T3-L1 cells. Toxicology 393:150-159
Day, D B; Xiang, J; Mo, J et al. (2018) Combined use of an electrostatic precipitator and a high-efficiency particulate air filter in building ventilation systems: Effects on cardiorespiratory health indicators in healthy adults. Indoor Air 28:360-372
Slotkin, Theodore A; Ko, Ashley; Seidler, Frederic J (2018) Does growth impairment underlie the adverse effects of dexamethasone on development of noradrenergic systems? Toxicology 408:11-21
Rock, Kylie D; Horman, Brian; Phillips, Allison L et al. (2018) EDC IMPACT: Molecular effects of developmental FM 550 exposure in Wistar rat placenta and fetal forebrain. Endocr Connect 7:305-324
Weinhouse, Caren; Truong, Lisa; Meyer, Joel N et al. (2018) Caenorhabditis elegans as an emerging model system in environmental epigenetics. Environ Mol Mutagen 59:560-575
Sanders, Laurie H; Rouanet, Jeremy P; Howlett, Evan H et al. (2018) Newly Revised Quantitative PCR-Based Assay for Mitochondrial and Nuclear DNA Damage. Curr Protoc Toxicol 76:e50
Czaplicki, Lauren M; Dharia, Monika; Cooper, Ellen M et al. (2018) Evaluating the mycostimulation potential of select carbon amendments for the degradation of a model PAH by an ascomycete strain enriched from a superfund site. Biodegradation :
Meyer, Joel N; Hartman, Jessica H; Mello, Danielle F (2018) Mitochondrial Toxicity. Toxicol Sci 162:15-23
Oliveri, Anthony N; Ortiz, Erica; Levin, Edward D (2018) Developmental exposure to an organophosphate flame retardant alters later behavioral responses to dopamine antagonism in zebrafish larvae. Neurotoxicol Teratol 67:25-30

Showing the most recent 10 out of 291 publications