Acute ethanol exposure impairs learning and memory in humans and laboratory animals. Ethanol-induced deficits in spatial memory are believed to involved a suppression of hippocampal neuroplasticity. This pilot project examines spatial memory, spatial firing patterns of hippocampal neurons, and their sensitivity to acute ethanol, across inbred strains of mice. Two types of hippocampal neurons exhibit firing rates that are influenced by spatial information, location (place cells) and direction (head direction (HD) cells). The place and HD cell signals are thought to support spatial memory.
Specific Aim 1 examines hippocampal-dependent spatial memory and its sensitivity to ethanol in five inbred strains of mice. Specific examine hippocampal-dependent spatial memory and its sensitivity to ethanol in five inbred strains of mice.
Specific Aim 2 examines the spatial firing properties of place and HD cells and the influence of ethanol in the same inbred mouse strains. Amnestic doses of ethanol (from Aim 1) are predicted to influence spatial firing of place and HD cells. This research examines hippocampal functional cross inbred strains of mice and examines whether sensitivity to the behavioral effects of ethanol includes ethanol-induced amnesia. The goal of this project is to generate preliminary data for an R01 application to support research on the cognitive and neurophysiological effects of acute ethanol in inbred mouse strains.
Showing the most recent 10 out of 162 publications