Alcoholism is a disorder characterized by a loss of control over drinking and relapse. While the rewarding effects of alcohol are essential for some aspects of drinking, recent findings suggest that heavy drinking is a maladaptive, persistent habit involving a transition from decision-based to habit-based actions. This suggests that there are changes in prefrontal and dorsal striatal circuits that underlie these different types of behaviors. Support for this hypothesis comes from imaging studies that reveal alterations in prefrontal and striatal brain regions in alcoholic subjects as compared to non-alcoholic controls. Studies proposed in this research component will examine how changes in corticostriatal neural networks may underlie the transition from controlled, decision-based drinking to compulsive and habitual alcohol consumption. These studies use a well-characterized mouse model of dependence that involves repeated cycles of chronic intermittent ethanol (CIE) exposure and withdrawal that results in escalation of alcohol self-administration. Advanced multi-electrode array recording procedures will be used to measure neuronal population activity within discrete corticostriatal networks during performance of cognitive behavioral tasks that engage prefrontal networks. We hypothesize that repeated cycles of CIE exposure alters the dynamics of prefrontal cortical networks leading to impaired executive function and ultimately loss of inhibitory control by the prefrontal cortex (PFC) over drinking. This hypothesis will be tested using four specific aims that will: 1) Determine whether CIE exposure-induced escalations in drinking are associated with the transition from goal-directed to habitual control;2) Determine whether CIE exposure-induced escalation in drinking is associated with the development of deficits in working memory as an index of executive dysfunction;3) Use multi-electrode recording procedures to assess alterations in corticostriatal networks during repeated cycles of CIE exposure;and 4) Determine whether aripiprazole, a compound demonstrated during the previous funding cycle to reduce drinking in both mice and humans, reverses CIE exposure-induced deficits in working memory. The results of these studies will fundamentally advance our understanding of the role of neuroadaptive changes in corticostriatal networks in the development of alcohol addiction and dependence, and will lay the groundwork for future studies targeting executive function as a new pharmaco-therapeutic approach for more effective treatment of this devastating disorder.

Public Health Relevance

Alcoholism is a chronic relapsing disorder that is characterized by loss of control over drinking. Accumulating evidence suggests that prolonged and excessive alcohol consumption changes the brain so that it can no longer control drinking. Studies in this project will examine how chronic alcohol exposure changes brain activity in regions that control cognitive and habitual behaviors, thereby leading to addiction to and dependence on alcohol.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Specialized Center (P50)
Project #
5P50AA010761-19
Application #
8601277
Study Section
Special Emphasis Panel (ZAA1)
Project Start
Project End
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
19
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Medical University of South Carolina
Department
Type
DUNS #
City
Charleston
State
SC
Country
United States
Zip Code
29403
Zamudio-Bulcock, Paula A; Homanics, Gregg E; Woodward, John J (2018) Loss of Ethanol Inhibition of N-Methyl-D-Aspartate Receptor-Mediated Currents and Plasticity of Cerebellar Synapses in Mice Expressing the GluN1(F639A) Subunit. Alcohol Clin Exp Res 42:698-705
Cannady, Reginald; Rinker, Jennifer A; Nimitvilai, Sudarat et al. (2018) Chronic Alcohol, Intrinsic Excitability, and Potassium Channels: Neuroadaptations and Drinking Behavior. Handb Exp Pharmacol 248:311
Harlan, Benjamin A; Becker, Howard C; Woodward, John J et al. (2018) Opposing actions of CRF-R1 and CB1 receptors on VTA-GABAergic plasticity following chronic exposure to ethanol. Neuropsychopharmacology 43:2064-2074
Hanlon, Colleen A; Dowdle, Logan T; Henderson, J Scott (2018) Modulating Neural Circuits with Transcranial Magnetic Stimulation: Implications for Addiction Treatment Development. Pharmacol Rev 70:661-683
Hanlon, Colleen A; Dowdle, Logan T; Gibson, Nicole B et al. (2018) Cortical substrates of cue-reactivity in multiple substance dependent populations: transdiagnostic relevance of the medial prefrontal cortex. Transl Psychiatry 8:186
Gioia, Dominic A; Xu, Minfu; Wayman, Wesley N et al. (2018) Effects of drugs of abuse on channelrhodopsin-2 function. Neuropharmacology 135:316-327
Anton, Raymond F; Latham, Patricia K; Voronin, Konstantin E et al. (2018) Nicotine-Use/Smoking Is Associated with the Efficacy of Naltrexone in the Treatment of Alcohol Dependence. Alcohol Clin Exp Res 42:751-760
Anderson, Ethan M; Larson, Erin B; Guzman, Daniel et al. (2018) Overexpression of the Histone Dimethyltransferase G9a in Nucleus Accumbens Shell Increases Cocaine Self-Administration, Stress-Induced Reinstatement, and Anxiety. J Neurosci 38:803-813
Osterndorff-Kahanek, Elizabeth A; Tiwari, Gayatri R; Lopez, Marcelo F et al. (2018) Long-term ethanol exposure: Temporal pattern of microRNA expression and associated mRNA gene networks in mouse brain. PLoS One 13:e0190841
Stewart, Scott H; Reuben, Adrian; Anton, Raymond F (2018) Reply: Carbohydrate Deficient Transferrin in Patients with Cirrhosis: A Tale of Bridges. Alcohol Alcohol 53:351-352

Showing the most recent 10 out of 209 publications