NACP, the precursor of non-A component of Alzheimer's disease (AD) amyloid (alpha-synuclein) is a synaptic molecule that accumulates in AD plaques. Recent studies have shown that a mutation in NACP is associated with familial Parkinson disease and that Lewy bodies are immunoreactive with antibodies against this molecule. In this context, the central hypothesis of this project is that abnormal accumulation/compartmentalization of NACP is involved in the process of neurodegeneration in Lewy body disease (LBD). The main objective of this proposal is to better understand the mechanisms through which abnormal accumulation of NACP leads to neurodegeneration. For this purpose, we propose the following Specific Aims: 1) To determine the relationship between abnormal NACP/alpha- synuclein accumulation and neurodegeneration in the brains of patients with LBD. We hypothesize that in LBD abnormal accumulation of NACP/alpha- synuclein will result in neurodegeneration of cells within the mesolimbic, mesocortical and striatonigral systems. For this purpose, we propose to determine the relationship between NACP/alpha-synuclein levels in synapses, neurons and neurites and cell counts, synapse density and apoptosis in postmortem brains (frontal, temporal, hippocampus, basal ganglial, cingulate and mesencephalon) from patients with LBD. 2) To develop in vivo models to investigate mechanisms which NACP/alpha- synuclein promotes neurodegeneration. We hypothesize that abnormal NACP/alpha-synuclein accumulation resulting over-expression of NACP/alpha-synuclein will result in synaptic damage and neuronal cell death in transgenic (tg) mice. Furthermore, we postulate that mutant NACP/alpha-synuclein might accelerate this process. For this purpose we propose to investigate the patterns of neurodegeneration in the brains of young and old tg mice over-expressing mutant and wildtype human NACP/alpha-synuclein under the control of the platelet-derived growth factor (PDGF) promoter. 3) To determine if risk factors associated with AD increase susceptibility to NACP/alpha-synuclein-induced neurodegeneration in tg mice. We hypothesize that known genetic risk factors for AD such as the presence of apolipoprotein E4 allele (ApoEepsilon4) and amyloid precursor protein (APP) mutations will enhance NACP/alpha-synuclein tg mice will be crossbred with apoE-deficient (knockout), ApoEepsilon3 or E4 tg mice, and with amyloid precursor protein (APP) wildtype and mutant tg MICE. Taken together these studies will help to better delineate the molecular and cellular mechanisms involved in neurodegeneration in LBD. The models and paradigms developed will also help to identify potential targets that will prevent neuronal cell injury in neurodegenerative disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
3P50AG005131-17S1
Application #
6398525
Study Section
Project Start
2000-06-01
Project End
2001-03-31
Budget Start
Budget End
Support Year
17
Fiscal Year
2000
Total Cost
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
077758407
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Spencer, Brian; Brüschweiler, Sven; Sealey-Cardona, Marco et al. (2018) Selective targeting of 3 repeat Tau with brain penetrating single chain antibodies for the treatment of neurodegenerative disorders. Acta Neuropathol 136:69-87
Edmonds, Emily C; Ard, M Colin; Edland, Steven D et al. (2018) Unmasking the benefits of donepezil via psychometrically precise identification of mild cognitive impairment: A secondary analysis of the ADCS vitamin E and donepezil in MCI study. Alzheimers Dement (N Y) 4:11-18
Pottier, Cyril; Zhou, Xiaolai; Perkerson 3rd, Ralph B et al. (2018) Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurol 17:548-558
Burke, Shanna L; Maramaldi, Peter; Cadet, Tamara et al. (2018) Decreasing hazards of Alzheimer's disease with the use of antidepressants: mitigating the risk of depression and apolipoprotein E. Int J Geriatr Psychiatry 33:200-211
Weintraub, Sandra; Besser, Lilah; Dodge, Hiroko H et al. (2018) Version 3 of the Alzheimer Disease Centers' Neuropsychological Test Battery in the Uniform Data Set (UDS). Alzheimer Dis Assoc Disord 32:10-17
Qian, Winnie; Fischer, Corinne E; Schweizer, Tom A et al. (2018) Association Between Psychosis Phenotype and APOE Genotype on the Clinical Profiles of Alzheimer's Disease. Curr Alzheimer Res 15:187-194
Wilmoth, Kristin; LoBue, Christian; Clem, Matthew A et al. (2018) Consistency of traumatic brain injury reporting in older adults with and without cognitive impairment. Clin Neuropsychol 32:524-529
Gallagher, Damien; Kiss, Alex; Lanctot, Krista et al. (2018) Depression and Risk of Alzheimer Dementia: A Longitudinal Analysis to Determine Predictors of Increased Risk among Older Adults with Depression. Am J Geriatr Psychiatry 26:819-827
Ting, Simon Kang Seng; Foo, Heidi; Chia, Pei Shi et al. (2018) Dyslexic Characteristics of Chinese-Speaking Semantic Variant of Primary Progressive Aphasia. J Neuropsychiatry Clin Neurosci 30:31-37
Haaksma, Miriam L; Calderón-Larrañaga, Amaia; Olde Rikkert, Marcel G M et al. (2018) Cognitive and functional progression in Alzheimer disease: A prediction model of latent classes. Int J Geriatr Psychiatry 33:1057-1064

Showing the most recent 10 out of 914 publications