Project 2: TAU Abstract: The neuropathologic definition of Alzheimer's disease (AD) relies on the presence of two well-characterized protein aggregates in the brain, amyloid-beta (A?) plaques and hyperphosphorylated tau in the form of neurofibrillary tangles. The widespread use of A? positron emission tomography (PET) imaging technology has helped identify the prevalence of significant A? deposition in vivo in the elderly population, in which elevated levels of A? are found in about 30% of cognitively normal elderly (NC) subjects at a mean age of about 75 years old, 60% of mild cognitive impairment (MCI) subjects, and 90% of clinically diagnosed AD subjects. Efforts to develop tau-selective PET imaging agents have been successful recently with the application of several new tau PET radioligands, including the radioligand [18F]T807 (T807). We propose to characterize the behavior of T807, in concert with other biomarkers of neurodegeneration, in NC, MCI, and AD subjects. In cross-sectional studies, we will investigate regional differences in brain tau load in the different subject groups and compare the in vivo topology of abnormal tau deposition with the pattern predicted by postmortem Braak staging. We will leverage existing data on [18F]2-fluoro-2-deoxy-D-glucose (FDG) hypometabolism, hippocampal volume (HV) loss, [11C]Pittsburgh Compound-B (PiB) measures of A? load, and cognitive performance measures in subjects recruited from NC, MCI and AD cohorts at the University of Pittsburgh in whom these biomarker measures have been obtained with separate funding to correlate with the T807 PET results. Following cross-sectional evaluation of tau load in the different groups, we will rescan all subjects using T807 at 30 months to evaluate longitudinal changes in T807 signal and compare tau changes with changes in the other biomarker measures in the same subjects. The combination of in vivo tau and A? imaging has the potential to provide a more complete view of the pathological progression of AD from prodromal to end-stage phases. Three NC groups will be evaluated in the proposed studies and compared to amyloid-positive MCI and AD groups. These NC groups include: amyloid-negative NC with no abnormal FDG and HV markers (Stage-0 NC); amyloid-positive NC with or without abnormal FDG and/or HV markers (Stage-1 and Stage-2 NC); and amyloid-negative NC with abnormal FDG and/or HV markers, characterized as suspected non-amyloid pathophysiology (SNAP) . Early studies indicate that some SNAP subjects may be on an AD pathway of cognitive decline and some may be on non-AD pathways. It is not clear whether neocortical tauopathy precedes A? abnormalities in SNAP subjects or whether the order of tau vs. A? dysregulation will distinguish which pathway SNAP subjects take. In vivo topographic changes in tau deposition relative to changes in A? deposition will be determined using T807 PET imaging in concert with PiB PET imaging. It is anticipated that the use of both T807 and PiB in these studies will help clarify the temporal sequences of tau and A? changes in mesial temporal cortex and neocortical brain regions in normal aging and in AD pathways.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005133-36
Application #
9686543
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
2021-03-31
Budget Start
2019-04-01
Budget End
2020-03-31
Support Year
36
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15260
Haaksma, Miriam L; Calderón-Larrañaga, Amaia; Olde Rikkert, Marcel G M et al. (2018) Cognitive and functional progression in Alzheimer disease: A prediction model of latent classes. Int J Geriatr Psychiatry 33:1057-1064
Kamboh, M Ilyas (2018) A Brief Synopsis on the Genetics of Alzheimer's Disease. Curr Genet Med Rep 6:133-135
Ramsey, Christine M; Gnjidic, Danijela; Agogo, George O et al. (2018) Longitudinal patterns of potentially inappropriate medication use following incident dementia diagnosis. Alzheimers Dement (N Y) 4:1-10
La Joie, Renaud; Ayakta, Nagehan; Seeley, William W et al. (2018) Multisite study of the relationships between antemortem [11C]PIB-PET Centiloid values and postmortem measures of Alzheimer's disease neuropathology. Alzheimers Dement :
Rodakowski, Juleen; Reynolds 3rd, Charles F; Lopez, Oscar L et al. (2018) Developing a Non-Pharmacological Intervention for Individuals With Mild Cognitive Impairment. J Appl Gerontol 37:665-676
Pottier, Cyril; Zhou, Xiaolai; Perkerson 3rd, Ralph B et al. (2018) Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurol 17:548-558
Hadjichrysanthou, Christoforos; McRae-McKee, Kevin; Evans, Stephanie et al. (2018) Potential Factors Associated with Cognitive Improvement of Individuals Diagnosed with Mild Cognitive Impairment or Dementia in Longitudinal Studies. J Alzheimers Dis 66:587-600
Ritzel, Rodney M; Lai, Yun-Ju; Crapser, Joshua D et al. (2018) Aging alters the immunological response to ischemic stroke. Acta Neuropathol 136:89-110
Hanfelt, John J; Peng, Limin; Goldstein, Felicia C et al. (2018) Latent classes of mild cognitive impairment are associated with clinical outcomes and neuropathology: Analysis of data from the National Alzheimer's Coordinating Center. Neurobiol Dis 117:62-71
Cohen, Ann D; McDade, Eric; Christian, Brad et al. (2018) Early striatal amyloid deposition distinguishes Down syndrome and autosomal dominant Alzheimer's disease from late-onset amyloid deposition. Alzheimers Dement 14:743-750

Showing the most recent 10 out of 667 publications