The Neuropathology Core was established during the first grant cycle of the Massachusetts ADRC, and will continue during years 06 to 10. The overall goals of the Neuropathology Core are to establish a neuropathological diagnosis on all brains submitted to the Core; to maintain the Tissue Resource Center of the Neuropathology Core as a source of brain tissue for investigators studying AD; to characterize thoroughly the brains of patients enrolled in the Clinical Core Units with regional quantitative morphometric, histochemical, and biochemical analyses; and to facilitate clinical-pathological correlative studies of histological, neurochemical, and neuropsychiatric aspects of AD. In order to accomplish these goals, we developed a standardized protocol of tissue acquisition and section procedures that ensures complete and reproducible examinations. Samples of regional brain tissue are prepared according to the specific needs of individual ADRC investigators; the Tissue Resource Center maintains adequate supplies of both formalin-fixed and deep frozen brain tissue. Clinical, general pathological, and neuropathological data from each case submitted to the Tissue Resource Center are stored in the central ADRC Brain REgistry. The database also contains information on tissue that is available for distribution to specific research projects.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005134-09
Application #
3790073
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
9
Fiscal Year
1992
Total Cost
Indirect Cost
Name
Harvard University
Department
Type
DUNS #
082359691
City
Boston
State
MA
Country
United States
Zip Code
02115
Makaretz, Sara J; Quimby, Megan; Collins, Jessica et al. (2018) Flortaucipir tau PET imaging in semantic variant primary progressive aphasia. J Neurol Neurosurg Psychiatry 89:1024-1031
Gallagher, Damien; Kiss, Alex; Lanctot, Krista et al. (2018) Depression and Risk of Alzheimer Dementia: A Longitudinal Analysis to Determine Predictors of Increased Risk among Older Adults with Depression. Am J Geriatr Psychiatry 26:819-827
Davis, Jeremy J (2018) Performance validity in older adults: Observed versus predicted false positive rates in relation to number of tests administered. J Clin Exp Neuropsychol 40:1013-1021
Haaksma, Miriam L; Calderón-Larrañaga, Amaia; Olde Rikkert, Marcel G M et al. (2018) Cognitive and functional progression in Alzheimer disease: A prediction model of latent classes. Int J Geriatr Psychiatry 33:1057-1064
Lin, Ming; Gong, Pinghua; Yang, Tao et al. (2018) Big Data Analytical Approaches to the NACC Dataset: Aiding Preclinical Trial Enrichment. Alzheimer Dis Assoc Disord 32:18-27
Wimalaratne, Sarala M; Juty, Nick; Kunze, John et al. (2018) Uniform resolution of compact identifiers for biomedical data. Sci Data 5:180029
Woerman, Amanda L; Kazmi, Sabeen A; Patel, Smita et al. (2018) Familial Parkinson's point mutation abolishes multiple system atrophy prion replication. Proc Natl Acad Sci U S A 115:409-414
Ramsey, Christine M; Gnjidic, Danijela; Agogo, George O et al. (2018) Longitudinal patterns of potentially inappropriate medication use following incident dementia diagnosis. Alzheimers Dement (N Y) 4:1-10
Kirson, Noam Y; Scott Andrews, J; Desai, Urvi et al. (2018) Patient Characteristics and Outcomes Associated with Receiving an Earlier Versus Later Diagnosis of Probable Alzheimer's Disease. J Alzheimers Dis 61:295-307
Woerman, Amanda L; Kazmi, Sabeen A; Patel, Smita et al. (2018) MSA prions exhibit remarkable stability and resistance to inactivation. Acta Neuropathol 135:49-63

Showing the most recent 10 out of 966 publications