A central mandate of the ADRC is to understand the pathophysiologic processes that underlie dementia. Nonetheless, the physical basis of cognitive and psychiatric symptoms in Alzheimer's disease (AD) remains uncertain, and there is a gap in our knowledge about age related changes in nondemented elderly. The Massachusetts ADRC has been collecting brain tissue from individuals who have been longitudinally clinically studied for 10 years. We have accumulated enough material to finally begin to construct a detailed model of clinical-pathological relationships in AD. We now propose to expand studies we recently initiated aimed at uncovering the temporal sequence of neuropathological changes in AD, and at answering whether or not neurofibrillary tangles (NFT), senile plaques (SP), neuronal loss an/or synaptic loss correlate with the clinical symptoms of AD. We will study AD patients, Down syndrome patients, and nondemented elderly individuals. Our results so far have led to several unexpected findings: SP do not correlate at all with duration or severity of dementia. We hypothesize that SP are in a dynamic equilibrium, both forming and resolving during the course of the disease. We suggest that A beta may be mobilized from the neuropil by ApoE or other potential A beta chaperone proteins. We will explore the recently reported association between sporadic AD and the ApoE-E4 allele by studying the influence of ApoE genotype on neuropathological phenotype. We also postulate that interactions of SP with inflammatory or proteolytic processes could lead to turnover of SP, and potentially to loss of neurons and synapses as well. We will examine SP turnover using a novel strategy based on the nonenzymatic accumulation of advanced glycosylation end products on long lived proteins. We and others find that NFT number in high order association cortices correlate with global measures of dementia. Synaptic loss has also been suggested as a physical substrate of dementia. We find that estimates of neuronal loss in high order association cortex correlate with clinical condition remarkably well. Surprisingly, however, our preliminary data suggest that neuronal loss far outstrips NFT formation, and that NFT formation may account for only a small minority of neuronal loss in the neocortex. Finally, neuropathological variables will be combined with the clinical data base. This will allow us to examine clinical and neuropathological heterogeneity, and to test hypotheses about clinical-pathological correlations. Looking to the future, we expect that additional candidate genes that are risk factors for or causative of AD will emerge, and the tissue samples and data developed in this project will be an ideal resource for determining clinical-pathological and genotype- phenotype correlations.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005134-12
Application #
3726271
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
12
Fiscal Year
1995
Total Cost
Indirect Cost
Name
Harvard University
Department
Type
DUNS #
082359691
City
Boston
State
MA
Country
United States
Zip Code
02115
Kamara, Dennis M; Gangishetti, Umesh; Gearing, Marla et al. (2018) Cerebral Amyloid Angiopathy: Similarity in African-Americans and Caucasians with Alzheimer's Disease. J Alzheimers Dis 62:1815-1826
Brent, Robert J (2018) Estimating the monetary benefits of medicare eligibility for reducing the symptoms of dementia. Appl Econ 50:6327-6340
Wegmann, Susanne; Eftekharzadeh, Bahareh; Tepper, Katharina et al. (2018) Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J 37:
Racine, Annie M; Brickhouse, Michael; Wolk, David A et al. (2018) The personalized Alzheimer's disease cortical thickness index predicts likely pathology and clinical progression in mild cognitive impairment. Alzheimers Dement (Amst) 10:301-310
Bennett, Rachel E; Robbins, Ashley B; Hu, Miwei et al. (2018) Tau induces blood vessel abnormalities and angiogenesis-related gene expression in P301L transgenic mice and human Alzheimer's disease. Proc Natl Acad Sci U S A 115:E1289-E1298
Deming, Yuetiva; Dumitrescu, Logan; Barnes, Lisa L et al. (2018) Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathol 136:857-872
Kaur, Antarpreet; Edland, Steven D; Peavy, Guerry M (2018) The MoCA-Memory Index Score: An Efficient Alternative to Paragraph Recall for the Detection of Amnestic Mild Cognitive Impairment. Alzheimer Dis Assoc Disord 32:120-124
Tse, Kai-Hei; Cheng, Aifang; Ma, Fulin et al. (2018) DNA damage-associated oligodendrocyte degeneration precedes amyloid pathology and contributes to Alzheimer's disease and dementia. Alzheimers Dement 14:664-679
Lee, Catherine; Betensky, Rebecca A; Alzheimer's Disease Neuroimaging Initiative (2018) Time-to-event data with time-varying biomarkers measured only at study entry, with applications to Alzheimer's disease. Stat Med 37:914-932
Schaffert, Jeff; LoBue, Christian; White, Charles L et al. (2018) Traumatic brain injury history is associated with an earlier age of dementia onset in autopsy-confirmed Alzheimer's disease. Neuropsychology 32:410-416

Showing the most recent 10 out of 966 publications