The Neuropathology Core was established during the first grant cycle of the Massachusetts ADRC, and will continue during years 06 to 10. The overall goals of the Neuropathology Core are to establish a neuropathological diagnosis on all brains submitted to the Core; to maintain the Tissue Resource Center of the Neuropathology Core as a source of brain tissue for investigators studying AD; to characterize thoroughly the brains of patients enrolled in the Clinical Core Units with regional quantitative morphometric, histochemical, and biochemical analyses; and to facilitate clinical-pathological correlative studies of histological, neurochemical, and neuropsychiatric aspects of AD. In order to accomplish these goals, we developed a standardized protocol of tissue acquisition and section procedures that ensures complete and reproducible examinations. Samples of regional brain tissue are prepared according to the specific needs of individual ADRC investigators; the Tissue Resource Center maintains adequate supplies of both formalin-fixed and deep frozen brain tissue. Clinical, general pathological, and neuropathological data from each case submitted to the Tissue Resource Center are stored in the central ADRC Brain REgistry. The database also contains information on tissue that is available for distribution to specific research projects.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005134-17
Application #
6314327
Study Section
Project Start
2000-05-16
Project End
2001-03-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
17
Fiscal Year
2000
Total Cost
$277,299
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02199
Deming, Yuetiva; Dumitrescu, Logan; Barnes, Lisa L et al. (2018) Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathol 136:857-872
Bennett, Rachel E; Robbins, Ashley B; Hu, Miwei et al. (2018) Tau induces blood vessel abnormalities and angiogenesis-related gene expression in P301L transgenic mice and human Alzheimer's disease. Proc Natl Acad Sci U S A 115:E1289-E1298
Tse, Kai-Hei; Cheng, Aifang; Ma, Fulin et al. (2018) DNA damage-associated oligodendrocyte degeneration precedes amyloid pathology and contributes to Alzheimer's disease and dementia. Alzheimers Dement 14:664-679
Kaur, Antarpreet; Edland, Steven D; Peavy, Guerry M (2018) The MoCA-Memory Index Score: An Efficient Alternative to Paragraph Recall for the Detection of Amnestic Mild Cognitive Impairment. Alzheimer Dis Assoc Disord 32:120-124
Schaffert, Jeff; LoBue, Christian; White, Charles L et al. (2018) Traumatic brain injury history is associated with an earlier age of dementia onset in autopsy-confirmed Alzheimer's disease. Neuropsychology 32:410-416
Lee, Catherine; Betensky, Rebecca A; Alzheimer's Disease Neuroimaging Initiative (2018) Time-to-event data with time-varying biomarkers measured only at study entry, with applications to Alzheimer's disease. Stat Med 37:914-932
Wachinger, Christian; Reuter, Martin; Klein, Tassilo (2018) DeepNAT: Deep convolutional neural network for segmenting neuroanatomy. Neuroimage 170:434-445
Brenowitz, Willa D; Han, Fang; Kukull, Walter A et al. (2018) Treated hypothyroidism is associated with cerebrovascular disease but not Alzheimer's disease pathology in older adults. Neurobiol Aging 62:64-71
Matsouaka, Roland A; Singhal, Aneesh B; Betensky, Rebecca A (2018) An optimal Wilcoxon-Mann-Whitney test of mortality and a continuous outcome. Stat Methods Med Res 27:2384-2400
Gallagher, Damien; Kiss, Alex; Lanctot, Krista L et al. (2018) Toward Prevention of Mild Cognitive Impairment in Older Adults With Depression: An Observational Study of Potentially Modifiable Risk Factors. J Clin Psychiatry 80:

Showing the most recent 10 out of 966 publications