The Neuropathology Core has been in operation since 1985 and continues to play a vital role to the Mount Sinai ADRC. The Neuropathology Core serves to obtain autopsy-derived brain specimens from individuals who have been evaluated and followed longitudinally by the Clinical Core. We strive to obtain brain specimens with a short post-mortem interval and for the entire specimen collection the median postmortem interval is less than 6 hours. The specimens are dissected and preserved in a manner that maximizes their utility for the needs of both the proposed studies within the Center as well as other AD and aging-related research projects that we actively contribute to. Our procedure includes snap freezing dissected portions derived from one half of the brain specimen and fixing the other half in freshly prepared paraformaldehyde. The dissection protocol in place allows for the preparation of selected regions of the brain in such a way that the non-biased sampling techniques of stereology can be applied to quantify normal and pathologic features. A detailed neuropathologic workup is carried out to establish a neuropathologic diagnosis as well as to document the extent and distribution of relevant neuropathologic lesions. These data are entered into an extensive data base which can be integrated with the clinical data base in order to explore cliniconeuropathologic relationships. Because this Brain Bank has been continuously operating for approximately 24 years, an efficient and effective operating structure for the Brain Bank already exists. The tissues we have collected have been extensively used in a wide range of studies. They are requested by numerous researchers within the ADRC, the greater Mount Sinai research community and by many other investigators throughout the US and even internationally. The overall aim of this core is to continue to maintain and operate the Brain Bank in such a way as to provide state-of-the-art diagnoses, quantify the extent and distribution of relavent neuropathologic lesion, and satisfy the needs of the cores and projects in the ADRC as well as current and future requirements of the research community both at Mount Sinai and elsewhere.

Public Health Relevance

The chief function of the Neuropathology Core is to provide state-of-the-art diagnostic services, collection of well-prepared brain material, and distribution of samples for cutting edge research, locally as well as in cooperative research across Centers and with other researchers outside of Centers. In addition, this Core has also played a major role in numerous clinicopathologic studies of AD.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005138-27
Application #
8440473
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
1997-05-01
Project End
2015-03-31
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
27
Fiscal Year
2011
Total Cost
$253,195
Indirect Cost
Name
Icahn School of Medicine at Mount Sinai
Department
Type
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Zhu, Carolyn W; Grossman, Hillel; Neugroschl, Judith et al. (2018) A randomized, double-blind, placebo-controlled trial of resveratrol with glucose and malate (RGM) to slow the progression of Alzheimer's disease: A pilot study. Alzheimers Dement (N Y) 4:609-616
Boban, Mirta; Babi? Leko, Mirjana; Miški?, Terezija et al. (2018) Human neuroblastoma SH-SY5Y cells treated with okadaic acid express phosphorylated high molecular weight tau-immunoreactive protein species. J Neurosci Methods :
Davis, Jeremy J (2018) Performance validity in older adults: Observed versus predicted false positive rates in relation to number of tests administered. J Clin Exp Neuropsychol 40:1013-1021
Qian, Winnie; Fischer, Corinne E; Schweizer, Tom A et al. (2018) Association Between Psychosis Phenotype and APOE Genotype on the Clinical Profiles of Alzheimer's Disease. Curr Alzheimer Res 15:187-194
Silverman, Jeremy M; Schmeidler, James (2018) Outcome age-based prediction of successful cognitive aging by total cholesterol. Alzheimers Dement 14:952-960
Gallagher, Damien; Kiss, Alex; Lanctot, Krista et al. (2018) Depression and Risk of Alzheimer Dementia: A Longitudinal Analysis to Determine Predictors of Increased Risk among Older Adults with Depression. Am J Geriatr Psychiatry 26:819-827
Lin, Ming; Gong, Pinghua; Yang, Tao et al. (2018) Big Data Analytical Approaches to the NACC Dataset: Aiding Preclinical Trial Enrichment. Alzheimer Dis Assoc Disord 32:18-27
Haaksma, Miriam L; Calderón-Larrañaga, Amaia; Olde Rikkert, Marcel G M et al. (2018) Cognitive and functional progression in Alzheimer disease: A prediction model of latent classes. Int J Geriatr Psychiatry 33:1057-1064
Warren, Noel A; Voloudakis, Georgios; Yoon, Yonejung et al. (2018) The product of the ?-secretase processing of ephrinB2 regulates VE-cadherin complexes and angiogenesis. Cell Mol Life Sci 75:2813-2826
Ramsey, Christine M; Gnjidic, Danijela; Agogo, George O et al. (2018) Longitudinal patterns of potentially inappropriate medication use following incident dementia diagnosis. Alzheimers Dement (N Y) 4:1-10

Showing the most recent 10 out of 555 publications