Mount Sinai ADRC (Sano): Project 2 (Buettner) | PROJECT SUMMARY Potential factors contributing to the increased risk for cognitive impairment (CI) in type 2 diabetes (T2D) include: (a) components of Alzheimer's disease (AD) pathology (plaques, tangles, synapse loss, neuronal loss); (b) atherosclerotic vasculopathy; (c) brain insulin resistance; (d) inflammation; (e) prior episodes of hypoglycemia; (f) other, as yet unknown factors. In the only report of this topic in which AD brain has been assessed directly, Talbot et al 17 presented evidence in support of the hypothesis that insulin resistance is a consistent feature of all typical, sporadic AD. Project 2 focuses on the putative pathophysiological underpinnings between insulin resistance/T2D and CI. Investigators in Project 2 will use an induced pluripotent stem cell (iPSC) strategy to derive neurons, astrocytes, mixed brain cell cultures, and white adipocytes from various clinical populations defined in Project 1. The neurons, astrocytes, and mixed cultures will be used to study the cellular phenotypes and insulin sensitivities of central nervous system (CNS) cells, while the adipocytes will be used as exemplars of peripheral insulin-sensitive cells. We will assess quantitatively the insulin sensitivities in CNS and peripheral cells derived from iPSCs from various clinical populations defined in Project 1. In order to establish the insulin sensitivity of the iPSC-derived neuron, we will study classical insulin signaling pathways in all cell types as assessed through the phosphorylation state of downstream signaling molecules. Importantly, as a physiological readout for insulin action, we will study neurons by electrophysiology and calcium imaging, while adipocytes will be characterized through the assessment of the ability of insulin to increase glucose uptake and to suppress lipolysis. To ascertain the dependence of these responses of insulin signaling through the insulin receptor, we will employ both pharmacological or molecular approaches, the latter via an antisense-mediated knockdown of the insulin receptor or the expression of a dominant-negative mutant version of the insulin-like growth factor (IGF)-1 receptor that heterodimerizes with the insulin receptor and blocks its function. These studies will establish whether insulin resistance is a feature of AD in peripheral and/or brain cells. Additional studies will provide a direct assessment for the possible participation of insulin resistance in the generation of structural pathology causing or predisposing to CI. With regard to pathology, we will measure insulin-stimulated A? secretion, and insulin-modulated tau phosphorylation in brain cells derived from the clinical populations defined in Project 1. Overall, the data derived from this project will test the hypothesis that insulin resistance is a consistent feature of the sporadic AD phenotype.

Public Health Relevance

Mount Sinai ADRC: Project 2 (Buettner) | NARRATIVE Narrative Project 2 will study the link between insulin resistance/type 2 diabetes (T2D) and cognitive impairment using induced pluripotent stem cells (iPSC) from various clinical populations defined in Project 1. These cells will be used to generate brain cells and white adipocytes to test whether central nervous system (CNS) insulin resistance links T2D and AD.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005138-33
Application #
9280770
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2017-04-01
Budget End
2018-03-31
Support Year
33
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Icahn School of Medicine at Mount Sinai
Department
Type
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Ki?emet-Piska?, Spomenka; Babi? Leko, Mirjana; Blažekovi?, Antonela et al. (2018) Evaluation of cerebrospinal fluid phosphorylated tau231 as a biomarker in the differential diagnosis of Alzheimer's disease and vascular dementia. CNS Neurosci Ther 24:734-740
Soleimani, Laili; Ravona-Springer, Ramit; Heymann, Anthony et al. (2018) Depression is more strongly associated with cognition in elderly women than men with type 2 diabetes. Int Psychogeriatr :1-5
Burke, Shanna L; Maramaldi, Peter; Cadet, Tamara et al. (2018) Decreasing hazards of Alzheimer's disease with the use of antidepressants: mitigating the risk of depression and apolipoprotein E. Int J Geriatr Psychiatry 33:200-211
Audrain, Mickael; Haure-Mirande, Jean-Vianney; Wang, Minghui et al. (2018) Integrative approach to sporadic Alzheimer's disease: deficiency of TYROBP in a tauopathy mouse model reduces C1q and normalizes clinical phenotype while increasing spread and state of phosphorylation of tau. Mol Psychiatry :
Boban, Mirta; Babi? Leko, Mirjana; Miški?, Terezija et al. (2018) Human neuroblastoma SH-SY5Y cells treated with okadaic acid express phosphorylated high molecular weight tau-immunoreactive protein species. J Neurosci Methods :
Zhu, Carolyn W; Grossman, Hillel; Neugroschl, Judith et al. (2018) A randomized, double-blind, placebo-controlled trial of resveratrol with glucose and malate (RGM) to slow the progression of Alzheimer's disease: A pilot study. Alzheimers Dement (N Y) 4:609-616
Qian, Winnie; Fischer, Corinne E; Schweizer, Tom A et al. (2018) Association Between Psychosis Phenotype and APOE Genotype on the Clinical Profiles of Alzheimer's Disease. Curr Alzheimer Res 15:187-194
Davis, Jeremy J (2018) Performance validity in older adults: Observed versus predicted false positive rates in relation to number of tests administered. J Clin Exp Neuropsychol 40:1013-1021
Gallagher, Damien; Kiss, Alex; Lanctot, Krista et al. (2018) Depression and Risk of Alzheimer Dementia: A Longitudinal Analysis to Determine Predictors of Increased Risk among Older Adults with Depression. Am J Geriatr Psychiatry 26:819-827
Silverman, Jeremy M; Schmeidler, James (2018) Outcome age-based prediction of successful cognitive aging by total cholesterol. Alzheimers Dement 14:952-960

Showing the most recent 10 out of 555 publications