Amyotrophic lateral sclerosis (ALS) is the classical form of motor neuron disease (MND). Like Alzheimer's disease (AD), ALS is a chronic progressive neuronal disorder that usually occurs in late life. Studies of ALS are relevant to AD for several reasons: subsets of ALS and AD patients have familial autosomal dominant disease linked to missense mutations of genes on chromosome 21; in both disorders, disease processes selectively affect groups of nerve cells; the mechanisms of selective vulnerability and dysfunction/death of these groups of neurons are not yet well understood in either disease; in ALS and AD, affected neurons develop cytoskeletal pathology and eventually die; these neuronal pathologies have been suggested to be mediated by several mechanisms, including excitotoxicity, oxidative damage, and calcium influx; with several exceptions, small animal models are not yet available; denervation sometimes occurs in subjects with ALS, and there are no effective therapies for ALS or AD. The Character, dynamics, and evolution of the cellular pathology and the mechanisms of cell dysfunction/death are difficult to study in humans. Because interventional biological approaches are not possible in humans and because autopsy analyses are usually limited to severe end-stage disease, animal models are essential. The recent discovery that mutations in the Cu/Zn superoxide dismutase (SOD1) gene are linked to familial ALS (FALS) suggest that transgenic strategies that introduce SOD1 mutations into mice can produce a model of FALS. These mice can be used to test the roles of these mutations in disease, to establish the characteristics and evolution of the pathology associated with these mutations, to clarify the mechanisms of motor neuron vulnerability and dysfunction, and to test novel therapies. In this Project, we will analyze the effect of the mutation on SOD1 activity in in vitro systems and on neurons in transgenic mice with SOD1 mutations. We will use strategies that have proven to be of great value in investigations of the mechanisms of dysfunction/death of neurons in other models of neuronal disease. We think that the approaches outlined in this Project to study transgenic mice with FALS mutations, which parallel those described in other projects of our Alzheimer's Disease Research Center, will greatly enhance our understanding of this neurodegenerative disease and will be of great value in identifying pathogenetic mechanisms and providing models to test therapies in late-onset, age-associated genetic diseases of the nervous system.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
2P50AG005146-12
Application #
3745786
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
12
Fiscal Year
1994
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
045911138
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Nicolas, Aude (see original citation for additional authors) (2018) Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron 97:1268-1283.e6
Bouhrara, Mustapha; Reiter, David A; Bergeron, Christopher M et al. (2018) Evidence of demyelination in mild cognitive impairment and dementia using a direct and specific magnetic resonance imaging measure of myelin content. Alzheimers Dement 14:998-1004
Xiong, Yulan; Neifert, Stewart; Karuppagounder, Senthilkumar S et al. (2018) Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice. Proc Natl Acad Sci U S A 115:1635-1640
Varma, Vijay R; Oommen, Anup M; Varma, Sudhir et al. (2018) Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study. PLoS Med 15:e1002482
Wong, Dean F; Comley, Robert A; Kuwabara, Hiroto et al. (2018) Characterization of 3 Novel Tau Radiopharmaceuticals, 11C-RO-963, 11C-RO-643, and 18F-RO-948, in Healthy Controls and in Alzheimer Subjects. J Nucl Med 59:1869-1876
Kirson, Noam Y; Scott Andrews, J; Desai, Urvi et al. (2018) Patient Characteristics and Outcomes Associated with Receiving an Earlier Versus Later Diagnosis of Probable Alzheimer's Disease. J Alzheimers Dis 61:295-307
Guerreiro, Rita; Ross, Owen A; Kun-Rodrigues, Celia et al. (2018) Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurol 17:64-74
Zhou, Zilu; Wang, Weixin; Wang, Li-San et al. (2018) Integrative DNA copy number detection and genotyping from sequencing and array-based platforms. Bioinformatics 34:2349-2355
Soldan, Anja; Pettigrew, Corinne; Albert, Marilyn (2018) Evaluating Cognitive Reserve Through the Prism of Preclinical Alzheimer Disease. Psychiatr Clin North Am 41:65-77
Kaur, Antarpreet; Edland, Steven D; Peavy, Guerry M (2018) The MoCA-Memory Index Score: An Efficient Alternative to Paragraph Recall for the Detection of Amnestic Mild Cognitive Impairment. Alzheimer Dis Assoc Disord 32:120-124

Showing the most recent 10 out of 830 publications