A major problem in the study of animal models of neurodegenerative disease is the lack of an unambiguous marker to identify dying neurons. A new method, the terminal transferase-mediated dUTP-biotin nick end labeling (TUNEL) technique involves the end labeling of fragmented DNA associated with dying cells with biotinylated nucleotides, after which cells are visualized via avidin-conjugated peroxidase. The method has been used successfully to label cells undergoing programmed death in the digestive, lymphatic, and reproductive systems and skin. TUNEL has not been applied to studies of cell death in the nervous system, and in this Pilot, we propose a series of experiments designed to investigate the validity and usefulness of this technique as a tool to enhance our understanding of neuronal cell death. Initially, we will validate the selectivity and specificity of the technique on tissues from the spinal cord of rats at embryonic day 16, a time point at which naturally occurring motor neuron death has been reported. Subsequently, we will examine three animal models of retrograde neuronal degeneration that are well established in our laboratory, one involving neonatal and the other two involving adult neurons. The studies described in this Pilot will allow us to determine the usefulness of TUNEL in identifying degenerating neurons. This strategy will then be used to investigate these issues in other models, including transgenic mice in our Alzheimer's Disease Research Center (ADRC), and eventually, to focus this approach on processes that lead to death of neurons in the human brain.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005146-16
Application #
6267350
Study Section
Project Start
1998-07-01
Project End
1999-03-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
16
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
045911138
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Qian, Winnie; Fischer, Corinne E; Schweizer, Tom A et al. (2018) Association Between Psychosis Phenotype and APOE Genotype on the Clinical Profiles of Alzheimer's Disease. Curr Alzheimer Res 15:187-194
Reagh, Zachariah M; Noche, Jessica A; Tustison, Nicholas J et al. (2018) Functional Imbalance of Anterolateral Entorhinal Cortex and Hippocampal Dentate/CA3 Underlies Age-Related Object Pattern Separation Deficits. Neuron 97:1187-1198.e4
Gallagher, Damien; Kiss, Alex; Lanctot, Krista et al. (2018) Depression and Risk of Alzheimer Dementia: A Longitudinal Analysis to Determine Predictors of Increased Risk among Older Adults with Depression. Am J Geriatr Psychiatry 26:819-827
Samus, Quincy M; Black, Betty Smith; Bovenkamp, Diane et al. (2018) Home is where the future is: The BrightFocus Foundation consensus panel on dementia care. Alzheimers Dement 14:104-114
Shi, Liu; Baird, Alison L; Westwood, Sarah et al. (2018) A Decade of Blood Biomarkers for Alzheimer's Disease Research: An Evolving Field, Improving Study Designs, and the Challenge of Replication. J Alzheimers Dis 62:1181-1198
Tse, Kai-Hei; Cheng, Aifang; Ma, Fulin et al. (2018) DNA damage-associated oligodendrocyte degeneration precedes amyloid pathology and contributes to Alzheimer's disease and dementia. Alzheimers Dement 14:664-679
Haaksma, Miriam L; Calderón-Larrañaga, Amaia; Olde Rikkert, Marcel G M et al. (2018) Cognitive and functional progression in Alzheimer disease: A prediction model of latent classes. Int J Geriatr Psychiatry 33:1057-1064
Schaffert, Jeff; LoBue, Christian; White, Charles L et al. (2018) Traumatic brain injury history is associated with an earlier age of dementia onset in autopsy-confirmed Alzheimer's disease. Neuropsychology 32:410-416
Kaji, Seiji; Maki, Takakuni; Kinoshita, Hisanori et al. (2018) Pathological Endogenous ?-Synuclein Accumulation in Oligodendrocyte Precursor Cells Potentially Induces Inclusions in Multiple System Atrophy. Stem Cell Reports 10:356-365
Na, Chan Hyun; Barbhuiya, Mustafa A; Kim, Min-Sik et al. (2018) Discovery of noncanonical translation initiation sites through mass spectrometric analysis of protein N termini. Genome Res 28:25-36

Showing the most recent 10 out of 830 publications