The Alzheimer's Disease Research Center (ADRC) at The Johns Hopkins Medical Institutions (JHMI) is committed to investigations of aging and Alzheimer's disease (AD). Age and genes are important risk factors for AD, and our principal goal is to examine the impact of age and mutations in the amyloid precursor protein (APP) in the cognition/memory abnormalities occurring in elderly humans and in our mouse/human-APPswe (Mo/Hu- APP) transgenic (Tg) mice. Thus, with the support of Cores A and D, Cores B and C focus on behavior-brain correlations in intact, mildly impaired, and demented aged individuals, particularly by those in the cohorts of the Baltimore Longitudinal Study of Aging (BLSA). This extraordinarily well characterized with serial imaging studies; many of these individuals have entered our prospective autopsy program. Supported by Cores B and C, Project 4 takes advantage of this material to examine early brain lesions focusing on: glial cell responses and the production of inflammatory mediators. complement factors, cytokines, etc.) capable of influencing neurons and synapses. These findings will be correlated with detailed assessments of the neuropathology, quantitative estates of synaptic markers, and evidence of cell death and neuronal loss. In parallel to the studies of aging and AD in humans, Projects 1-3 take advantage of our lines of Mo/Hu-APPswe Tg mice that express mutant APP at levels approximately threefold greater than endogenous MoAPP; these animals develop Abeta deposits, we hypothesize that elevated levels of Abeta42 damage synapses before over deposits of Abeta species. In project 1, we will examine the performances of these Tg mice on tasks designed to assess cognition/memory. In Project 2, we will correlate these findings with studies of biochemical marker (e.g. levels of Abeta peptide species, synaptic proteins, neurotransmitters and their enzymes) and the character/severity of the cellular pathology (e.g., abnormalities in synapses, Abeta deposition, loss of synapses, activation of glial cells, subsets of neurons, evidence of cell death, etc.) in specific regions of brain. In Project 3, we believe that these parallel clinical-neurochemical-pathological correlative studies of humans and Tg mice will help to define the biological substrates of impairments. In the intervention studies of our Tg mice, we will assess the responsivity (to age, genotype, and toxins) to the basal forebrain cholinergic and monoaminergic systems that are vulnerable in cases of AD; attempt to provoke glial cells to enhance amyloid; and to test the effects of estrogen on Abeta deposits. Finally, Core D will serve to disseminate information concerning age-associated diseases to families, caregivers, and other health professionals.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005146-20
Application #
6509486
Study Section
Special Emphasis Panel (ZAG1-PCR-3 (J5))
Program Officer
Phelps, Creighton H
Project Start
1984-09-28
Project End
2004-03-31
Budget Start
2002-04-01
Budget End
2003-03-31
Support Year
20
Fiscal Year
2002
Total Cost
$1,864,208
Indirect Cost
Name
Johns Hopkins University
Department
Pathology
Type
Schools of Medicine
DUNS #
045911138
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Xiong, Yulan; Neifert, Stewart; Karuppagounder, Senthilkumar S et al. (2018) Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice. Proc Natl Acad Sci U S A 115:1635-1640
Nicolas, Aude (see original citation for additional authors) (2018) Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron 97:1268-1283.e6
Bouhrara, Mustapha; Reiter, David A; Bergeron, Christopher M et al. (2018) Evidence of demyelination in mild cognitive impairment and dementia using a direct and specific magnetic resonance imaging measure of myelin content. Alzheimers Dement 14:998-1004
Kirson, Noam Y; Scott Andrews, J; Desai, Urvi et al. (2018) Patient Characteristics and Outcomes Associated with Receiving an Earlier Versus Later Diagnosis of Probable Alzheimer's Disease. J Alzheimers Dis 61:295-307
Varma, Vijay R; Oommen, Anup M; Varma, Sudhir et al. (2018) Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study. PLoS Med 15:e1002482
Wong, Dean F; Comley, Robert A; Kuwabara, Hiroto et al. (2018) Characterization of 3 Novel Tau Radiopharmaceuticals, 11C-RO-963, 11C-RO-643, and 18F-RO-948, in Healthy Controls and in Alzheimer Subjects. J Nucl Med 59:1869-1876
Guerreiro, Rita; Ross, Owen A; Kun-Rodrigues, Celia et al. (2018) Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurol 17:64-74
Zhou, Zilu; Wang, Weixin; Wang, Li-San et al. (2018) Integrative DNA copy number detection and genotyping from sequencing and array-based platforms. Bioinformatics 34:2349-2355
Soldan, Anja; Pettigrew, Corinne; Albert, Marilyn (2018) Evaluating Cognitive Reserve Through the Prism of Preclinical Alzheimer Disease. Psychiatr Clin North Am 41:65-77
Kaur, Antarpreet; Edland, Steven D; Peavy, Guerry M (2018) The MoCA-Memory Index Score: An Efficient Alternative to Paragraph Recall for the Detection of Amnestic Mild Cognitive Impairment. Alzheimer Dis Assoc Disord 32:120-124

Showing the most recent 10 out of 830 publications