The Neuropathology Core (Core D) of the Johns Hopkins Alzheimer's Disease Research Center (ADRC) has two overarching goals, one related to the analysis and distribution of brain tissue and other specimens from subjects in the ADRC, and the other related to the analysis of genetically engineered mouse models by investigators associated with the ADRC.
The specific aims of Core D are as follows: (1) to arrange and perform autopsies on clinically well-characterized subjects enrolled through the JHMI ADRC and assist with consensus diagnoses on subjects associated with the ADRC (comprised of the Clinic Cohort and the BLSA Cohort). (2) to accession and store optimally prepared tissues from the autopsies and to make these specimens available to investigators associated with the ADRC and at other collaborating institutions. (3) to accession and store samples of biological fluids and DNA obtained pre- and postmortem from subjects in the ADRC. (4) to facilitate APOE genotyping on participants in the ADRC. (5) to support the assessment of genetically engineered mouse models relevant to Alzheimer's disease (AD) and related disorders, (6) to collaborate with the medical and research community outside of Johns Hopkins by providing assistance with postmortem diagnoses of AD and other types of dementia, and (7) to train basic investigators and clinical neuroscientists in the morphological and diagnostic concepts relevant to AD, to other types of dementias and neurodegenerative disorders.

Public Health Relevance

The Johns Hopkins Alzheimer's Disease Research Center (ADRC) will address many of the topics important to dementia research, with a particular focus on the understanding the earliest phases of Alzheimer's disease (AD). This approach is important if we are ultimately going to be able to diagnose and treat AD as early as possible. The ADRC fosters interactions among scientists who are pursuing this overarching theme.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005146-29
Application #
8441069
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
29
Fiscal Year
2012
Total Cost
$232,072
Indirect Cost
$85,010
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Ting, Simon Kang Seng; Foo, Heidi; Chia, Pei Shi et al. (2018) Dyslexic Characteristics of Chinese-Speaking Semantic Variant of Primary Progressive Aphasia. J Neuropsychiatry Clin Neurosci 30:31-37
Eavani, Harini; Habes, Mohamad; Satterthwaite, Theodore D et al. (2018) Heterogeneity of structural and functional imaging patterns of advanced brain aging revealed via machine learning methods. Neurobiol Aging 71:41-50
Wang, Tingyan; Qiu, Robin G; Yu, Ming (2018) Predictive Modeling of the Progression of Alzheimer's Disease with Recurrent Neural Networks. Sci Rep 8:9161
Barnes, Josephine; Bartlett, Jonathan W; Wolk, David A et al. (2018) Disease Course Varies According to Age and Symptom Length in Alzheimer's Disease. J Alzheimers Dis 64:631-642
Agogo, George O; Ramsey, Christine M; Gnjidic, Danijela et al. (2018) Longitudinal associations between different dementia diagnoses and medication use jointly accounting for dropout. Int Psychogeriatr 30:1477-1487
Seddighi, Sahba; Varma, Vijay R; An, Yang et al. (2018) SPARCL1 Accelerates Symptom Onset in Alzheimer's Disease and Influences Brain Structure and Function During Aging. J Alzheimers Dis 61:401-414
Fredericks, Carolyn A; Sturm, Virginia E; Brown, Jesse A et al. (2018) Early affective changes and increased connectivity in preclinical Alzheimer's disease. Alzheimers Dement (Amst) 10:471-479
Holingue, Calliope; Wennberg, Alexandra; Berger, Slava et al. (2018) Disturbed sleep and diabetes: A potential nexus of dementia risk. Metabolism 84:85-93
Alosco, Michael L; Sugarman, Michael A; Besser, Lilah M et al. (2018) A Clinicopathological Investigation of White Matter Hyperintensities and Alzheimer's Disease Neuropathology. J Alzheimers Dis 63:1347-1360
van Bergen, Jiri M G; Li, Xu; Quevenco, Frances C et al. (2018) Low cortical iron and high entorhinal cortex volume promote cognitive functioning in the oldest-old. Neurobiol Aging 64:68-75

Showing the most recent 10 out of 830 publications