Accumulation of proteinaceous aggregates is one of the defining hallmarks of neurodegenerative diseases. How these proteins cause disease and how they are subsequently cleared has remained an enigma. Tau, a microtubule binding protein, is one such aggregated protein found in multiple neurodegenerative syndromes including Frontotemporal dementia (FTD), Alzheimer's disease (AD), Progressive Supranuclear Palsy (PSP), and Corticobasalganglionic Degeneration (CBD). Understanding tau mediated neurodegeneration may lead to important therapeutic strategies for these disorders. Our goal is to study how decreasing tau levels and decreasing 4R:3R tau ratios affects the behavioral and pathological abnormalities in mouse models of dementia. Previous studies demonstrate that tau knockout animals are protected from amyloid beta induced behavioral abnormalities in mice. Our goal is to test whether decreasing mouse tau in older animals will also provide protection. Some mutations in tau that cause FTD lead to changes in alternative splicing and increased levels of 4R:3R tau. An N279K FTD mouse model replicates the splicing defect and behavioral pathological changes. Our goal is to test whether reversing the splicing defect in an adult N279K can reverse the behavioral and pathologic changes. In order to decrease tau mRNA and protein levels, we will infuse antisense oligonucleotides into the cerebral spinal fluid that bathes the brain and spinal cord. These oligos activate RNAse H and degrade tau mRNA. To decrease 4R:3R tau ratios, we will use a similar antisense oligo strategy, but with antisense oligos designed to promote exclusion of exon 10 (and thus decrease 4R:3R ratio) rather than decreasing tau mRNA. We show preliminary evidence for a set of oligos that decrease tau mRNA in vitro and for another group of oligos that decrease 4R:3R ratios in vitro. After establishing the efficacy of these oligos following intraventricular infusion, we will treat J20 APP mice with oligos that decrease mouse tau mRNA and protein and treat N279K tau mice with oligos that decrease 4R:3R ratios by changing tau splicing. We anticipate that these oligos will prevent the behavioral and pathological changes seen in these models. These data would form the basis for a similar treatment strategy in patients.

Public Health Relevance

There are no treatments which substantially delay the progression of Alzheimer's disease or Frontotemporal dementia. This proposal tests whether changing a protein called tau will improve behavior and pathological changes in mouse models of Alzheimer's disease and Frontotemporal dementia. This novel therapeutic strategy, if successful would be applicable to human dementias.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005681-29
Application #
8441091
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
29
Fiscal Year
2012
Total Cost
$196,118
Indirect Cost
$66,760
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Babulal, Ganesh M; Chen, Suzie; Williams, Monique M et al. (2018) Depression and Alzheimer's Disease Biomarkers Predict Driving Decline. J Alzheimers Dis 66:1213-1221
Ting, Simon Kang Seng; Foo, Heidi; Chia, Pei Shi et al. (2018) Dyslexic Characteristics of Chinese-Speaking Semantic Variant of Primary Progressive Aphasia. J Neuropsychiatry Clin Neurosci 30:31-37
Musiek, Erik S; Bhimasani, Meghana; Zangrilli, Margaret A et al. (2018) Circadian Rest-Activity Pattern Changes in Aging and Preclinical Alzheimer Disease. JAMA Neurol 75:582-590
Yan, Qi; Nho, Kwangsik; Del-Aguila, Jorge L et al. (2018) Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging. Mol Psychiatry :
Broce, Iris; Karch, Celeste M; Wen, Natalie et al. (2018) Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies. PLoS Med 15:e1002487
Alosco, Michael L; Sugarman, Michael A; Besser, Lilah M et al. (2018) A Clinicopathological Investigation of White Matter Hyperintensities and Alzheimer's Disease Neuropathology. J Alzheimers Dis 63:1347-1360
Gangishetti, Umesh; Christina Howell, J; Perrin, Richard J et al. (2018) Non-beta-amyloid/tau cerebrospinal fluid markers inform staging and progression in Alzheimer's disease. Alzheimers Res Ther 10:98
Qian, Winnie; Fischer, Corinne E; Schweizer, Tom A et al. (2018) Association Between Psychosis Phenotype and APOE Genotype on the Clinical Profiles of Alzheimer's Disease. Curr Alzheimer Res 15:187-194
Strain, Jeremy F; Smith, Robert X; Beaumont, Helen et al. (2018) Loss of white matter integrity reflects tau accumulation in Alzheimer disease defined regions. Neurology 91:e313-e318
Roe, Catherine M; Babulal, Ganesh M; Stout, Sarah H et al. (2018) Using the A/T/N Framework to Examine Driving in Preclinical AD. Geriatrics (Basel) 3:

Showing the most recent 10 out of 952 publications