The chief function of the Neuropathology Core (NC) is to provide state of the art diagnostic services, to set up and maintain a collection of optimally prepared brain samples, and to supply samples for cutting edge research to investigators of the Center, affiliated Centers, and to outside neuroscientists conducting research into neurodegenerative diseases. Because humans are the only known species to naturally develop Alzheimer disease (AD) or related illnesses, the availability of carefully prepared postmortem samples is essenfial despite the existence of valuable transgenic animal models. Thus, human fissue-dependent studies require that the diagnostic categorization of samples of interest is as accurate as possible. This tissue must be made available quickly following the receipt of a request to enhance laboratory efficiency and productivities. Therefore, the specific aims of NC are: 1. To establish an accurate diagnosis on all brains obtained for the Center including clinico-pathological interpretations of the findings, which are recorded within two standardized reports;a) a text-based for clinicians and medical files, and b) a quantification-based report. The quantificafion-based report provides data to the Clinical Care / Data Management, and to the National Alzheimer's Coordinafing Committee (NACC) in compliance with National Institute on Aging (NIA) requirements. Furthermore, it is used for identifying the samples in storage with variables matching those specified by requestors;2. To obtain brain samples for tissue-dependent fresh frozen studies with or without requirement of cellular morphology preservation, which are ready for immediate disbursement once categorized;and formalin fixed samples;3. To organize the collecfion of samples, maintain it safely, and select among the samples in storage the ones that best match the requirement of a specific study with subsequent distribution within five working days from the time the receipt of the request;4. To teach clinicians, trainees, and neuroscientists the neuropathology of the demenfias, and to assist in correlating findings made in transgenic animal models with those usually occurring in the human brains;and 5. To cooperate with other Centers including the Nafional Institute of Neurological Disorders and Stroke (NINDS) supported Udall Center.

Public Health Relevance

Defining the changes underlying dementias is prerequisite for knowing how to prevent them. Therefore, brains of individuals who died at different stage of the dementia, and recording the type, extend, and distribution of the changes must be achieved to optimize the specificity of samples defined for basic research including tissue-dependent investigations aiming at disclosing the causes of dementias.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG008702-25
Application #
8664312
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
25
Fiscal Year
2014
Total Cost
$217,376
Indirect Cost
$81,531
Name
Columbia University
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Deming, Yuetiva; Dumitrescu, Logan; Barnes, Lisa L et al. (2018) Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathol 136:857-872
Winawer, Melodie R; Griffin, Nicole G; Samanamud, Jorge et al. (2018) Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol 83:1133-1146
Tse, Kai-Hei; Cheng, Aifang; Ma, Fulin et al. (2018) DNA damage-associated oligodendrocyte degeneration precedes amyloid pathology and contributes to Alzheimer's disease and dementia. Alzheimers Dement 14:664-679
Schaffert, Jeff; LoBue, Christian; White, Charles L et al. (2018) Traumatic brain injury history is associated with an earlier age of dementia onset in autopsy-confirmed Alzheimer's disease. Neuropsychology 32:410-416
Qureshi, Yasir H; Patel, Vivek M; Berman, Diego E et al. (2018) An Alzheimer's Disease-Linked Loss-of-Function CLN5 Variant Impairs Cathepsin D Maturation, Consistent with a Retromer Trafficking Defect. Mol Cell Biol 38:
Reitz, Christiane (2018) Retromer Dysfunction and Neurodegenerative Disease. Curr Genomics 19:279-288
Tariciotti, Leonardo; Casadei, Matthew; Honig, Lawrence S et al. (2018) Clinical Experience with Cerebrospinal Fluid A?42, Total and Phosphorylated Tau in the Evaluation of 1,016 Individuals for Suspected Dementia. J Alzheimers Dis 65:1417-1425
Davis, Jeremy J (2018) Performance validity in older adults: Observed versus predicted false positive rates in relation to number of tests administered. J Clin Exp Neuropsychol 40:1013-1021
Crum, Jana; Wilson, Jeffrey; Sabbagh, Marwan (2018) Does taking statins affect the pathological burden in autopsy-confirmed Alzheimer's dementia? Alzheimers Res Ther 10:104
Masucci, Michael D; Lister, Amanda; Corcoran, Cheryl M et al. (2018) Motor Dysfunction as a Risk Factor for Conversion to Psychosis Independent of Medication Use in a Psychosis-Risk Cohort. J Nerv Ment Dis 206:356-361

Showing the most recent 10 out of 640 publications