The proposed Mayo Alzheimer's Disease Research Center (ADRC) will build upon the experience of the previously funded Mayo Alzheimer's Disease Center (P30) and the new faculty at Mayo Jacksonville, FL and the Mayo Scottsdale, AZ to address research questions in aging and Alzheimer's disease (AD). The ADRC will consist of five cores: Administrative Core, Clinical and Research Support Core, Neuropathology and Genetics Core, Neuroimaging Core and Education and Information Transfer Core, and two projects: Project 1: """"""""Cytoskeletal Pathology in the Neurodegeneration of AD,""""""""Project """"""""The contribution of Leukoaraisosis to Cognitive Impairment in Aging and Alzheimer's Disease."""""""" The Center will address several scientific themes including neuroepidemiology of dementia and AD, the boundary between normal aging and AD, and predictors of cognitive impairment in asymptomatic persons. New faculty appointments in Mayo Jacksonville in the basic science of amyloid processing, tau, genetics and antibody development will complement the clinical and epidemiology expertise in the remainder of the Center. Investigators in Scottsdale will add functional imaging studies in at-risk subjects to pursue the scientific themes of the Center. The proposed ADRC will extend the productivity of the existing Alzheimer's Disease Center and develop new insights into aging and AD.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG016574-05
Application #
6631492
Study Section
Special Emphasis Panel (ZAG1-PCR-3 (J5))
Program Officer
Phelps, Creighton H
Project Start
1999-05-01
Project End
2004-04-30
Budget Start
2003-05-15
Budget End
2004-04-30
Support Year
5
Fiscal Year
2003
Total Cost
$1,734,074
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Kaur, Antarpreet; Edland, Steven D; Peavy, Guerry M (2018) The MoCA-Memory Index Score: An Efficient Alternative to Paragraph Recall for the Detection of Amnestic Mild Cognitive Impairment. Alzheimer Dis Assoc Disord 32:120-124
Allen, Mariet; Wang, Xue; Burgess, Jeremy D et al. (2018) Conserved brain myelination networks are altered in Alzheimer's and other neurodegenerative diseases. Alzheimers Dement 14:352-366
Stricker, Nikki H; Lundt, Emily S; Edwards, Kelly K et al. (2018) Comparison of PC and iPad administrations of the Cogstate Brief Battery in the Mayo Clinic Study of Aging: assessing cross-modality equivalence of computerized neuropsychological tests. Clin Neuropsychol :1-25
Brenowitz, Willa D; Han, Fang; Kukull, Walter A et al. (2018) Treated hypothyroidism is associated with cerebrovascular disease but not Alzheimer's disease pathology in older adults. Neurobiol Aging 62:64-71
Bove, Riley M; Patrick, Ellis; Aubin, Cristin McCabe et al. (2018) Reproductive period and epigenetic modifications of the oxidative phosphorylation pathway in the human prefrontal cortex. PLoS One 13:e0199073
La Joie, Renaud; Ayakta, Nagehan; Seeley, William W et al. (2018) Multisite study of the relationships between antemortem [11C]PIB-PET Centiloid values and postmortem measures of Alzheimer's disease neuropathology. Alzheimers Dement :
Wang, Qi; Guo, Lei; Thompson, Paul M et al. (2018) The Added Value of Diffusion-Weighted MRI-Derived Structural Connectome in Evaluating Mild Cognitive Impairment: A Multi-Cohort Validation1. J Alzheimers Dis 64:149-169
Sun, Wenyan; Samimi, Hanie; Gamez, Maria et al. (2018) Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat Neurosci 21:1038-1048
Zhao, Na; Liu, Chia-Chen; Qiao, Wenhui et al. (2018) Apolipoprotein E, Receptors, and Modulation of Alzheimer's Disease. Biol Psychiatry 83:347-357
Graff-Radford, Jonathan; Rabinstein, Alejandro A; Lesnick, Timothy G et al. (2018) Microinfarcts and blood pressure trajectories: response to Dr Niu et al. J Hum Hypertens 32:385

Showing the most recent 10 out of 1014 publications