This project, entitled """"""""Mapping Early Network Dysfunction in FTD and AD"""""""" will develop novel network connectivity analyses with the goal of improving early detection and diagnosis of frontotemporal dementia (FTD) and Alzheimer's disease (AD). Normal cognitive and behavioral functions require coordinated activity, within large-scale, distributed networks. Emerging data from human studies and animal disease models suggest that specific networks may develop early, tell-tale aberrations during incipient neurodegenerative disease. To explore this possibility, we will use functional connectivity MRI (fcMRI) and diffusion spectral imaging (DSI) to study 60 patients with FTD, 20 asymptomatic FTD gene mutation carriers, 15 patients with AD, and 30 healthy controls. We hypothesize that network connectivity mapping will link each clinical syndrome to a specific intrinsic brain network, will prove capable of detecting early disease, and will provide new insights into symptom pathogenesis.
Our aims are (1) to detect network alterations in early stage FTD and AD, (2) to compare the ability of fcMRI, DSI, and conventional structural MRI to detect network-level dysfunction in presymptomatic FTD gene mutation carriers, and (3) to correlate FTD and AD symptoms with network connectivity disruption. The knowledge gained could provide a first step toward a novel, non- invasive imaging biomarker for early FTD and AD and clarify the network basis for FTD, AD, and other neuropsychiatric disorders that target the brain at the network level.

Public Health Relevance

This project will investigate the specific brain networks disrupted in frontemporal dementia and Alzheimer's disease. The goal of the research is to use neuroimaging to clarify where in the brain these diseases begin and how network dysfunction leads to symptoms. Further developed, these methods could improve early detection and diagnosis and provide a sensitive biomarker for following the effects of treatment.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG023501-08
Application #
8235886
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
8
Fiscal Year
2011
Total Cost
$121,421
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Caverzasi, Eduardo; Mandelli, Maria Luisa; Hoeft, Fumiko et al. (2018) Abnormal age-related cortical folding and neurite morphology in children with developmental dyslexia. Neuroimage Clin 18:814-821
Dijkstra, Anke A; Lin, Li-Chun; Nana, Alissa L et al. (2018) Von Economo Neurons and Fork Cells: A Neurochemical Signature Linked to Monoaminergic Function. Cereb Cortex 28:131-144
Toller, Gianina; Brown, Jesse; Sollberger, Marc et al. (2018) Individual differences in socioemotional sensitivity are an index of salience network function. Cortex 103:211-223
Qian, Winnie; Fischer, Corinne E; Schweizer, Tom A et al. (2018) Association Between Psychosis Phenotype and APOE Genotype on the Clinical Profiles of Alzheimer's Disease. Curr Alzheimer Res 15:187-194
Tse, Kai-Hei; Cheng, Aifang; Ma, Fulin et al. (2018) DNA damage-associated oligodendrocyte degeneration precedes amyloid pathology and contributes to Alzheimer's disease and dementia. Alzheimers Dement 14:664-679
Gallagher, Damien; Kiss, Alex; Lanctot, Krista et al. (2018) Depression and Risk of Alzheimer Dementia: A Longitudinal Analysis to Determine Predictors of Increased Risk among Older Adults with Depression. Am J Geriatr Psychiatry 26:819-827
Schaffert, Jeff; LoBue, Christian; White, Charles L et al. (2018) Traumatic brain injury history is associated with an earlier age of dementia onset in autopsy-confirmed Alzheimer's disease. Neuropsychology 32:410-416
Casaletto, Kaitlin B; Staffaroni, Adam M; Elahi, Fanny et al. (2018) Perceived Stress is Associated with Accelerated Monocyte/Macrophage Aging Trajectories in Clinically Normal Adults. Am J Geriatr Psychiatry 26:952-963
Orr, Anna G; Lo, Iris; Schumacher, Heike et al. (2018) Istradefylline reduces memory deficits in aging mice with amyloid pathology. Neurobiol Dis 110:29-36
Haaksma, Miriam L; Calderón-Larrañaga, Amaia; Olde Rikkert, Marcel G M et al. (2018) Cognitive and functional progression in Alzheimer disease: A prediction model of latent classes. Int J Geriatr Psychiatry 33:1057-1064

Showing the most recent 10 out of 590 publications