The long-term goal of this research is to identify and validate the proteomic changes in the development of neurodegeneration. Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative diseases. Although AD and PD are considered distinct disorders, significant overlap occurs. Mild cognitive impairment (MCI) is a transient state between healthy aging and dementia, often representing a very early stage of cognitive decline associated with a degenerative dementing illness. Histopathologically, accumulation of abnormal proteins has been recognized as hallmarks of neurodegeneration in both AD and PD, suggesting that shared molecular mechanisms may mediate the pathogenesis of neurodegeneration in AD, PD, and AD/PD overlap disorders. Using novel mass spectrometry-based technologies, we will test our central hypothesis: changes in the ubiquitinated proteome and the postsynaptic proteome will reveal molecular commonality among AD, PD, and AD/PD overlap syndromes, and changes in protein patterns will accompany the evolution of disease from MCI to AD. We will use clinically well-characterized human postmortem samples to evaluate protein pattern changes in the ubiquitinated proteome and in the postsynaptic density (PSD). Samples of MCI, AD, PD and AD/PD overlap disease will be analyzed and compared to discover shared protein patterns. These protein changes will be further confirmed in a large set of disease cases. The results will enable the identification of potential biomarkers and provide critical molecular maps for subsequent studies of neurodegeneration.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG025688-02
Application #
7309922
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2006-05-01
Budget End
2007-04-30
Support Year
2
Fiscal Year
2006
Total Cost
$121,361
Indirect Cost
Name
Emory University
Department
Type
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
He, Yingli; She, Hua; Zhang, Ting et al. (2018) p38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1. J Cell Biol 217:315-328
Alosco, Michael L; Sugarman, Michael A; Besser, Lilah M et al. (2018) A Clinicopathological Investigation of White Matter Hyperintensities and Alzheimer's Disease Neuropathology. J Alzheimers Dis 63:1347-1360
Hampstead, Benjamin M; Towler, Stephen; Stringer, Anthony Y et al. (2018) Continuous measurement of object location memory is sensitive to effects of age and mild cognitive impairment and related to medial temporal lobe volume. Alzheimers Dement (Amst) 10:76-85
Brent, Robert J (2018) Estimating the monetary benefits of medicare eligibility for reducing the symptoms of dementia. Appl Econ 50:6327-6340
Brenowitz, Willa D; Han, Fang; Kukull, Walter A et al. (2018) Treated hypothyroidism is associated with cerebrovascular disease but not Alzheimer's disease pathology in older adults. Neurobiol Aging 62:64-71
Kaur, Gurjinder; Gauthier, Sebastien A; Perez-Gonzalez, Rocio et al. (2018) Cystatin C prevents neuronal loss and behavioral deficits via the endosomal pathway in a mouse model of down syndrome. Neurobiol Dis 120:165-173
Walker, Lary C (2018) Sabotage by the brain's supporting cells helps fuel neurodegeneration. Nature 557:499-500
Deming, Yuetiva; Dumitrescu, Logan; Barnes, Lisa L et al. (2018) Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathol 136:857-872
Gallagher, Damien; Kiss, Alex; Lanctot, Krista L et al. (2018) Toward Prevention of Mild Cognitive Impairment in Older Adults With Depression: An Observational Study of Potentially Modifiable Risk Factors. J Clin Psychiatry 80:
Ping, Lingyan; Duong, Duc M; Yin, Luming et al. (2018) Global quantitative analysis of the human brain proteome in Alzheimer's and Parkinson's Disease. Sci Data 5:180036

Showing the most recent 10 out of 444 publications