Alzheimer's Disease (AD) is thought to involve early synapse loss. Familial AD is most often caused by mutations in presenilins, which are the catalytic subunits of g-secretase. Inactivation of g-secretase in adult mice by conditional deletion of its presenilin or nicastrin subunits causes synaptic impairments followed by neurodegeneration, but the relation of the loss of g-secretase acitivity, the observed synaptic impairments, and the neurodegeneration is unclear, as is the connection between these processes and human AD. The present project will focus on clarifying the synaptic function of g-secretase in mature neurons and its relation to neurodegeneration, using mice as a model system. The project proposes four specific aims to address this overall goal. The first two specific aims will mechanistically characterize the synaptic impairments that are caused by g-secretase inactivation in young adult mice in vivo, and analyze their relation to the neurodegeneration that develops at a later stage after g-secretase inactivation. The third and fourth specific aim will then test the hypothesis that at least some of the synaptic functions of g-secretase that are impaired upon its inactivation may be mediated by g-secretase-dependent cleavage of presynaptic neurexins and postsynaptic neuroligins, which are trans-synaptic cell-adhesion molecules that bind to each other and act as master regulators of synaptic properties. Strikingly in this context, neurexins and neuroligins were shown previously to be substrates for g-secretase, were genetically linked to AD, and are arguably the most plausible mediators of g-secretase function at the synapse. To test the involvement of neurexins and neuroligins in the synaptic functions of g-secretase, the project will characterize the site and regulation of the g-secretase- dependent cleavage of neurexins and neuroligins, and probe the function of this cleavage using conditional knockout mice of these molecules. Moreover, the project will examine whether inactivation of neurexin- and/or neuroligin-cleavage promotes neurodegeneration. Viewed together, the experiments of this project will thus not only characterize the synaptic function of g-secretase and its relation to neurodegeneration, but also determine whether the synaptic function of g-secretase involves the cleavage of neurexins and/or neuroligins and whether such cleavage may play a contributory role in the pathogenesis of AD.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG047366-05
Application #
9706110
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2019-05-01
Budget End
2020-04-30
Support Year
5
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Kamara, Dennis M; Gangishetti, Umesh; Gearing, Marla et al. (2018) Cerebral Amyloid Angiopathy: Similarity in African-Americans and Caucasians with Alzheimer's Disease. J Alzheimers Dis 62:1815-1826
Tse, Kai-Hei; Cheng, Aifang; Ma, Fulin et al. (2018) DNA damage-associated oligodendrocyte degeneration precedes amyloid pathology and contributes to Alzheimer's disease and dementia. Alzheimers Dement 14:664-679
Bagge, Carina N; Henderson, Victor W; Laursen, Henning B et al. (2018) Risk of Dementia in Adults With Congenital Heart Disease: Population-Based Cohort Study. Circulation 137:1912-1920
Schaffert, Jeff; LoBue, Christian; White, Charles L et al. (2018) Traumatic brain injury history is associated with an earlier age of dementia onset in autopsy-confirmed Alzheimer's disease. Neuropsychology 32:410-416
Kaur, Antarpreet; Edland, Steven D; Peavy, Guerry M (2018) The MoCA-Memory Index Score: An Efficient Alternative to Paragraph Recall for the Detection of Amnestic Mild Cognitive Impairment. Alzheimer Dis Assoc Disord 32:120-124
Davis, Jeremy J (2018) Performance validity in older adults: Observed versus predicted false positive rates in relation to number of tests administered. J Clin Exp Neuropsychol 40:1013-1021
Flanagan, Margaret E; Larson, Eric B; Walker, Rod L et al. (2018) Associations between Use of Specific Analgesics and Concentrations of Amyloid-? 42 or Phospho-Tau in Regions of Human Cerebral Cortex. J Alzheimers Dis 61:653-662
Lin, Ming; Gong, Pinghua; Yang, Tao et al. (2018) Big Data Analytical Approaches to the NACC Dataset: Aiding Preclinical Trial Enrichment. Alzheimer Dis Assoc Disord 32:18-27
Brenowitz, Willa D; Han, Fang; Kukull, Walter A et al. (2018) Treated hypothyroidism is associated with cerebrovascular disease but not Alzheimer's disease pathology in older adults. Neurobiol Aging 62:64-71
Kirson, Noam Y; Scott Andrews, J; Desai, Urvi et al. (2018) Patient Characteristics and Outcomes Associated with Receiving an Earlier Versus Later Diagnosis of Probable Alzheimer's Disease. J Alzheimers Dis 61:295-307

Showing the most recent 10 out of 117 publications