The UIC/NIH Center for Botanical Dietary Supplements Research (""""""""UIC/NIH Botanical Center"""""""" and """"""""Center"""""""") was established in the fall of 1999 to address issues of standardization, quality, safety and efficacy of botanical dietary supplements (BDS). The Center adopted a multi-disciplinary strategy to achieve its basic and clinical research goals. Participating faculty and co-investigators are drawn from the College of Pharmacy's Dept. of Medicinal Chemistry and Pharmacognosy &College of Medicine's Dept. of Ophthalmology and Visual Sciences, Biostatistics Section. Through the Center's subcontractor agreement, faculty with Northwestern University's Feinberg School of Medicine, Department of OBGYN are also represented. The Center focuses its studies on botanicals that are reported to have potential benefit for women's health, and emphasizes the study of their safety profiles, as well as efficacy and mechanism of action. Botanical extracts are subjected to rigorous chemical evaluations (Project 1: Metabolomic characterizations) followed by both in vitro and in vivo biological testing. The Center will study the interaction of frequently used botanicals with estrogen hormones using bioassay and animal models (Project 2). Additionally, botanicals which have already demonstrated an adequate safety profile during previous Center clinical trials will be candidates for a clinical trial to evaluate their safety and efficacy profile in the presence of prescription drugs (Project 3). The trials will study the impact of the botanicals black cohosh, red clover and hops on ethical drugs, from drug classes which undergo hepatic metabolism and are frequently used by mid-life women. Thus, a clearer safety profile of drug-botanical interactions is sought during this grant cycle. Based on an anticipated safety results from a currently conducted Phase I trial, the Center will seek independent funding for a Phase II trial of hops. In order to achieve this agenda for determining the safety of BDS that have been chemically- and biologically-standardized, the renewed BRC research program which emphasizes the safety of botanicals for women's health will be organized around three Projects and four Cores: Project 1: Metabolomic Characterization of Botanical Chemistry and Synergy, Project 2: Botanical Modulation of Estrogen Carcinogenesis, Project 3: Metabolism, Safety and Efficacy, Core A: Administrative and Development, Core B: Botanical Integrity, Core C: Bioassay &Core D: Analytical. The experiments proposed in this application will greatly enhance the scientific understanding of the mechanism of action of botanicals and therefore their efficacy within an enhanced view of safety profiling.

Public Health Relevance

The UIC/NIH Botanical Center researches botanical dietary supplements (BDS) which have substantial impact on women's health, as determined by consumption via industry sales numbers and national surveys. BDS are consumed by women to promote good health and wellness as well as for the prevention of disease. A better understanding of the safety profile of BDS, as well as mechanism of action and the completion of clinical studies will have important public health relevance in light of the high consumption of BDS.

Agency
National Institute of Health (NIH)
Institute
National Center for Complementary & Alternative Medicine (NCCAM)
Type
Specialized Center (P50)
Project #
3P50AT000155-11S1
Application #
8209313
Study Section
Special Emphasis Panel (ZAT1-SM (19))
Program Officer
Hopp, Craig
Project Start
1999-09-30
Project End
2015-08-31
Budget Start
2010-09-01
Budget End
2011-08-31
Support Year
11
Fiscal Year
2011
Total Cost
$141,208
Indirect Cost
Name
University of Illinois at Chicago
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Hajirahimkhan, Atieh; Mbachu, Obinna; Simmler, Charlotte et al. (2018) Estrogen Receptor (ER) Subtype Selectivity Identifies 8-Prenylapigenin as an ER? Agonist from Glycyrrhiza inflata and Highlights the Importance of Chemical and Biological Authentication. J Nat Prod 81:966-975
Liu, Yang; Zhang, Yu; Chen, Shao-Nong et al. (2018) The influence of natural deep eutectic solvents on bioactive natural products: studying interactions between a hydrogel model and Schisandra chinensis metabolites. Fitoterapia 127:212-219
Liu, Yang; Friesen, J Brent; McAlpine, James B et al. (2018) Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. J Nat Prod 81:679-690
Rue, Emily A; Rush, Michael D; van Breemen, Richard B (2018) Procyanidins: a comprehensive review encompassing structure elucidation via mass spectrometry. Phytochem Rev 17:1-16
Simmler, Charlotte; Graham, James G; Chen, Shao-Nong et al. (2018) Integrated analytical assets aid botanical authenticity and adulteration management. Fitoterapia 129:401-414
Keiler, Annekathrin M; Macejova, Dana; Dietz, Birgit M et al. (2017) Evaluation of estrogenic potency of a standardized hops extract on mammary gland biology and on MNU-induced mammary tumor growth in rats. J Steroid Biochem Mol Biol 174:234-241
Huang, Lingyi; Nikolic, Dejan; van Breemen, Richard B (2017) Hepatic metabolism of licochalcone A, a potential chemopreventive chalcone from licorice (Glycyrrhiza inflata), determined using liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 409:6937-6948
AbouZid, Sameh F; Ahmed, Hayam S; Moawad, Abeer S et al. (2017) Chemotaxonomic and biosynthetic relationships between flavonolignans produced by Silybum marianum populations. Fitoterapia 119:175-184
Simmler, Charlotte; Lankin, David C; Nikoli?, Dejan et al. (2017) Isolation and structural characterization of dihydrobenzofuran congeners of licochalcone A. Fitoterapia 121:6-15
Rush, Michael D; Walker, Elisabeth M; Prehna, Gerd et al. (2017) Development of a Magnetic Microbead Affinity Selection Screen (MagMASS) Using Mass Spectrometry for Ligands to the Retinoid X Receptor-?. J Am Soc Mass Spectrom 28:479-485

Showing the most recent 10 out of 192 publications