Core C is the hyperbaric chamber core for the SCOR program. There are two goals for this core. The first is to provide investigators with hyperbaric chambers for experimental projects. The second is to examine apparatus to optimize safety and provide technical advice on high pressure equipment in all investigators involved in SCOR-sponsored investigations. All four SCOR projects require hyperbaric chambers. The clinical project (Project 1) will utilize the therapy support mechanism for patients and the remaining three projects will use the resources present in the Chamber Core C to satisfy their requirements. There are a large number of animal-sized chambers owned by the Institute for Environmental Medicine (IFEM) that can be loaned to the primary SCOR investigators and also to investigators funded for pilot studies as part of the Developmental Research and the Career Development Programs administered by Core A. Operation of Core C presents economic advantages to the SCOR program, as investigators will not have to purchase hyperbaric chambers from commercial sources. Moreover, this mechanism will allow appropriate supervision of chamber use to assure they are being used safely. Therefore, the Chamber Core will facilitate maximal scientific productivity by the SCOR program.

Agency
National Institute of Health (NIH)
Institute
National Center for Complementary & Alternative Medicine (NCCAM)
Type
Specialized Center (P50)
Project #
5P50AT000428-02
Application #
6501018
Study Section
Special Emphasis Panel (ZAT1)
Project Start
2001-08-01
Project End
2002-07-31
Budget Start
Budget End
Support Year
2
Fiscal Year
2001
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Elzarrad, Khair; Haroon, Abu; Reed, Darla et al. (2009) Early incorporated endothelial cells as origin of metastatic tumor vasculogenesis. Clin Exp Metastasis 26:589-98
Elzarrad, M Khair; Haroon, Abu; Willecke, Klaus et al. (2008) Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium. BMC Med 6:20
Han, Shih-Tsung; Bhopale, Veena M; Thom, Stephen R (2007) Xanthine oxidoreductase and neurological sequelae of carbon monoxide poisoning. Toxicol Lett 170:111-5
Evans, Sydney M; Du, Kevin L; Chalian, Ara A et al. (2007) Patterns and levels of hypoxia in head and neck squamous cell carcinomas and their relationship to patient outcome. Int J Radiat Oncol Biol Phys 69:1024-31
Jain, Deepika; Atochina-Vasserman, Elena; Kadire, Helchem et al. (2007) SP-D-deficient mice are resistant to hyperoxia. Am J Physiol Lung Cell Mol Physiol 292:L861-71
Buerk, Donald G (2007) Nitric oxide regulation of microvascular oxygen. Antioxid Redox Signal 9:829-43
Thom, Stephen R; Bhopale, Veena M; Fisher, Donald (2006) Hyperbaric oxygen reduces delayed immune-mediated neuropathology in experimental carbon monoxide toxicity. Toxicol Appl Pharmacol 213:152-9
Evans, Sydney M; Schrlau, Amy E; Chalian, Ara A et al. (2006) Oxygen levels in normal and previously irradiated human skin as assessed by EF5 binding. J Invest Dermatol 126:2596-606
Thom, Stephen R; Bhopale, Veena M; Han, Shih-Tsung et al. (2006) Intravascular neutrophil activation due to carbon monoxide poisoning. Am J Respir Crit Care Med 174:1239-48
Thom, Stephen R; Bhopale, Veena M; Velazquez, Omaida C et al. (2006) Stem cell mobilization by hyperbaric oxygen. Am J Physiol Heart Circ Physiol 290:H1378-86

Showing the most recent 10 out of 27 publications