Insulin resistance is a key pattioptiysiologic feature ofthe """"""""metabolic syndrome"""""""" and is strongly associated with co-existing cardiovascular rislc factors and accelerated atherosclerosis. Nutritional supplementation with the use of botanicals that effectively increase insulin sensitivity represent a very attractive and novel approach for future studies designed to intervene in the development of metabolic syndrome. Unfortunately, considerable controversy exists regarding the effect of botanical supplements on the metabolic syndrome as there is a paucity of data in humans in regard to the effect of botanicals to improve measures of insulin action in vivo or on cellular aspects of insulin action. However, we have demonstrated that a well characterized extract of Artemisia dracunculus L. regulates insulin receptor signaling at the cellular level, increases insulin sensitivity in vivo, and have identified novel proteins and several intracellular pathways modulated by the extract. Specifically, our studies have demonstrated that the mechanism by which A. dracunulus L. regulates insulin action at the cellular level may be secondary to modulating negative regulators of insulin receptor signaling, i.e. protein-tyrosine phosphatases, and reducing lipid intermediates in target tissues. For the next funding cycle, investigations will be expanded in two areas. First, we will include other selected members ofthe Artemisia genus representing both closely and distantly related species since it remains unclear how their diverse biochemical and taxonomical characteristics are related. Secondly, with use of """"""""state ofthe art"""""""" metabolomic profiling and proteomic techniques, we will significantly expand investigations to provide in-depth and comprehensive analysis ofthe cellular mechanisms of action operative in vivo by which extracts of Artemisia sp. improve insulin sensitivity. Thus, the primary objective is to evaluate the combined effects of selected Artemisia sp. extracts to enhance and modify cellular lipid metabolism while simultaneously modulating negative regulators of insulin receptor signaling, i.e. PTPases, in skeletal muscle and liver as complementary components ofthe mechanism by which these botanicals enhance insulin sensitivity and attenuate the progression to metabolic syndrome.

Public Health Relevance

Given the paucity of data regarding safety and efficacy of botanicals, randomized trials with mechanistic aims are warranted. Before clinical studies can proceed, critical pre-clinical data addressing efficacy, safety and mechanisms are required. The studies will provide for a critical pre-clinical evaluation of botanicals to guide future studies designed to test feasible interventions for insulin resistance and metabolic syndrome.

Agency
National Institute of Health (NIH)
Institute
National Center for Complementary & Alternative Medicine (NCCAM)
Type
Specialized Center (P50)
Project #
2P50AT002776-06
Application #
8006899
Study Section
Special Emphasis Panel (ZAT1-SM (19))
Project Start
2005-04-01
Project End
2015-08-31
Budget Start
2010-07-01
Budget End
2011-08-31
Support Year
6
Fiscal Year
2010
Total Cost
$527,600
Indirect Cost
Name
Lsu Pennington Biomedical Research Center
Department
Type
DUNS #
611012324
City
Baton Rouge
State
LA
Country
United States
Zip Code
70808
Graf, Brittany L; Zhang, Li; Corradini, Maria G et al. (2018) Physicochemical differences between malanga (Xanthosoma sagittifolium) and potato (Solanum tuberosum) tubers are associated with differential effects on the gut microbiome. J Funct Foods 45:268-276
Kim, Youjin; Jaja-Chimedza, Asha; Merrill, Daniel et al. (2018) A 14-day repeated-dose oral toxicological evaluation of an isothiocyanate-enriched hydro-alcoholic extract from Moringa oleifera Lam. seeds in rats. Toxicol Rep 5:418-426
Rebello, Candida J; Nikonova, Elena V; Zhou, Sharon et al. (2018) Effect of Lorcaserin Alone and in Combination with Phentermine on Food Cravings After 12-Week Treatment: A Randomized Substudy. Obesity (Silver Spring) 26:332-339
Forney, Laura A; Lenard, Natalie R; Stewart, Laura K et al. (2018) Dietary Quercetin Attenuates Adipose Tissue Expansion and Inflammation and Alters Adipocyte Morphology in a Tissue-Specific Manner. Int J Mol Sci 19:
Losso, Jack N; Finley, John W; Karki, Namrata et al. (2018) Pilot Study of the Tart Cherry Juice for the Treatment of Insomnia and Investigation of Mechanisms. Am J Ther 25:e194-e201
Yu, Yongmei; Mendoza, Tamra M; Ribnicky, David M et al. (2018) An Extract of Russian Tarragon Prevents Obesity-Related Ectopic Lipid Accumulation. Mol Nutr Food Res 62:e1700856
Zhang, Li; Carmody, Rachel N; Kalariya, Hetal M et al. (2018) Grape proanthocyanidin-induced intestinal bloom of Akkermansia muciniphila is dependent on its baseline abundance and precedes activation of host genes related to metabolic health. J Nutr Biochem 56:142-151
Boudreau, Anik; Fuller, Scott; Ribnicky, David M et al. (2018) Groundsel Bush (Baccharis halimifolia) Extract Promotes Adipocyte Differentiation In Vitro and Increases Adiponectin Expression in Mature Adipocytes. Biology (Basel) 7:
Bruce-Keller, Annadora J; Salbaum, J Michael; Berthoud, Hans-Rudolf (2018) Harnessing Gut Microbes for Mental Health: Getting From Here to There. Biol Psychiatry 83:214-223
Hsia, Daniel S; Grove, Owen; Cefalu, William T (2017) An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 24:73-79

Showing the most recent 10 out of 174 publications