The principal source of proposals for SPORE Developmental Research funding is an annual request for applications to all investigators in the institution, explaining the SPORE program goals and soliciting proposals for innovative projects. This RFA is publicized widely throughout the departments and centers of the College. Baylor's solid base of basic researchers in a variety of biological disciplines offers a wide field of potential collaborations - indeed, this was one of the chief attractions leading to the group's move from San Antonio in 1999. Our RFAs for developmental proposals have yielded applications representing many departments and centers and including internationally recognized laboratories. In addition, a portion of the SPORE developmental funds is reserved for possible projects of exceptional promise which may arise in mid-year. Such projects would normally be identified by the SPORE Executive Committee and Internal Advisory Committee. Indeed, the Executive Committee may take a direct role in the preparation of potential projects, seeking opportunities to be exploited and encouraging investigators to organize such projects and carry out any necessary pilot work to give an indication of the concept's feasibility. Thus we can take advantage of opportunities that develop at any time during the year, because of new findings, new technologies and unique reagents, or unexpected collaborative possibilities. This flexibility has more than once allowed us to proceed rapidly to translational development of a new discovery.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA058183-18
Application #
8374571
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
Project End
2013-05-30
Budget Start
2011-12-01
Budget End
2012-11-30
Support Year
18
Fiscal Year
2012
Total Cost
$142,534
Indirect Cost
$72,398
Name
Baylor College of Medicine
Department
Type
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Kaochar, Salma; Mitsiades, Nicholas (2018) A Novel Mechanism to Drive Castration-Resistant Prostate Cancer. Trends Endocrinol Metab 29:366-368
Bhat, Raksha R; Yadav, Puja; Sahay, Debashish et al. (2018) GPCRs profiling and identification of GPR110 as a potential new target in HER2+ breast cancer. Breast Cancer Res Treat 170:279-292
Guarducci, Cristina; Bonechi, Martina; Benelli, Matteo et al. (2018) Cyclin E1 and Rb modulation as common events at time of resistance to palbociclib in hormone receptor-positive breast cancer. NPJ Breast Cancer 4:38
Rimawi, Mothaffar F; De Angelis, Carmine; Contreras, Alejandro et al. (2018) Low PTEN levels and PIK3CA mutations predict resistance to neoadjuvant lapatinib and trastuzumab without chemotherapy in patients with HER2 over-expressing breast cancer. Breast Cancer Res Treat 167:731-740
Sukumaran, Sujita; Watanabe, Norihiro; Bajgain, Pradip et al. (2018) Enhancing the Potency and Specificity of Engineered T Cells for Cancer Treatment. Cancer Discov 8:972-987
Hertz, D L; Kidwell, K M; Hilsenbeck, S G et al. (2017) CYP2D6 genotype is not associated with survival in breast cancer patients treated with tamoxifen: results from a population-based study. Breast Cancer Res Treat 166:277-287
Yu, L; Liang, Y; Cao, X et al. (2017) Identification of MYST3 as a novel epigenetic activator of ER? frequently amplified in breast cancer. Oncogene 36:2910-2918
Guven, Adem; Villares, Gabriel J; Hilsenbeck, Susan G et al. (2017) Carbon nanotube capsules enhance the in vivo efficacy of cisplatin. Acta Biomater 58:466-478
Veeraraghavan, Jamunarani; De Angelis, Carmine; Reis-Filho, Jorge S et al. (2017) De-escalation of treatment in HER2-positive breast cancer: Determinants of response and mechanisms of resistance. Breast 34 Suppl 1:S19-S26
Xu, Xiaowei; De Angelis, Carmine; Burke, Kathleen A et al. (2017) HER2 Reactivation through Acquisition of the HER2 L755S Mutation as a Mechanism of Acquired Resistance to HER2-targeted Therapy in HER2+ Breast Cancer. Clin Cancer Res 23:5123-5134

Showing the most recent 10 out of 306 publications