Lung cancer is the leading cause of cancer death in athe United States, accounting for more mortality than athe combination of breast, prostate, colon and rectal cancer. Smokers unquestionably have an increased risk for lung cancer and tobacco abuse accounts for nearly 90% of all lung cancers. There is evidence, however, that a subset of 15-25% of tobacco smokers are more highly susceptible and that this susceptibility is inherited. Our research group has previously reported that a subset of individuals have significant elevations of levels of bombesin-like peptides in the lower respiratory tract and urine. During the previous period of SPORE funding, we have completed studies which suggest that elevations of bombesin-like peptides are neither a marker of exposure to tobacco, nor of early tobacco-induced disease, but rather a marker of susceptibility to tobacco-induced disease, should an individual smoke. Furthermore, we have initiated studies examining peptidases as candidate genes regulating bombesin-like peptide levels, found wide variation in expression of one peptidase, neutral endopeptidase, and determined that neutral endopeptidase acts as a growth modulator for both small cell and non-small cell lung cancer. We now propose to test three hypotheses: 1. Bombesin-like peptide levels are genetically determined. 2. Peptidase expression affects bombesin-like genetic susceptibility to lung cancer and tumor biology. They are likely to translate into new means to define susceptible, high-risk populations, novel approaches to chemoprevention, biologic markers for early detection and additional therapeutic strategies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
3P50CA058187-07S1
Application #
6217424
Study Section
Project Start
1999-05-01
Project End
2000-04-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
7
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Colorado Denver
Department
Type
DUNS #
065391526
City
Aurora
State
CO
Country
United States
Zip Code
80045
Tippimanchai, Darinee D; Nolan, Kyle; Poczobutt, Joanna et al. (2018) Adenoviral vectors transduce alveolar macrophages in lung cancer models. Oncoimmunology 7:e1438105
DeHart, David N; Lemasters, John J; Maldonado, Eduardo N (2018) Erastin-Like Anti-Warburg Agents Prevent Mitochondrial Depolarization Induced by Free Tubulin and Decrease Lactate Formation in Cancer Cells. SLAS Discov 23:23-33
Ren, Shengxiang; Zhang, Shucai; Jiang, Tao et al. (2018) Early detection of lung cancer by using an autoantibody panel in Chinese population. Oncoimmunology 7:e1384108
Davies, Kurtis D; Le, Anh T; Sheren, Jamie et al. (2018) Comparison of Molecular Testing Modalities for Detection of ROS1 Rearrangements in a Cohort of Positive Patient Samples. J Thorac Oncol 13:1474-1482
Iams, Wade T; Yu, Hui; Shyr, Yu et al. (2018) First-line Chemotherapy Responsiveness and Patterns of Metastatic Spread Identify Clinical Syndromes Present Within Advanced KRAS Mutant Non-Small-cell Lung Cancer With Different Prognostic Significance. Clin Lung Cancer 19:531-543
McDaniel, Nellie K; Cummings, Christopher T; Iida, Mari et al. (2018) MERTK Mediates Intrinsic and Adaptive Resistance to AXL-targeting Agents. Mol Cancer Ther 17:2297-2308
Ghosh, Moumita; Miller, York E; Vandivier, R William et al. (2018) Reply to Sohal: Airway Basal Cell Reprogramming and Epithelial-Mesenchymal Transition: A Potential Key to Understanding Early Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 197:1645-1646
Ghosh, Moumita; Miller, York E; Nakachi, Ichiro et al. (2018) Exhaustion of Airway Basal Progenitor Cells in Early and Established Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 197:885-896
Farago, Anna F; Taylor, Martin S; Doebele, Robert C et al. (2018) Clinicopathologic Features of Non-Small-Cell Lung Cancer Harboring an NTRK Gene Fusion. JCO Precis Oncol 2018:
He, Yayi; Liu, Sangtian; Mattei, Jane et al. (2018) The combination of anti-KIR monoclonal antibodies with anti-PD-1/PD-L1 monoclonal antibodies could be a critical breakthrough in overcoming tumor immune escape in NSCLC. Drug Des Devel Ther 12:981-986

Showing the most recent 10 out of 435 publications